Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ArXiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38076511

RESUMEN

Electrochromic optical recording (ECORE) is a label-free method that utilizes electrochromism to optically detect electrical signals in biological cells with a high signal-to-noise ratio and is suitable for long-term recording. However, ECORE usually requires a large and intricate optical setup, making it relatively difficult to transport and to study specimens on a large scale. Here, we present a Compact ECORE (CECORE) apparatus that drastically reduces the spatial footprint and complexity of the ECORE setup whilst maintaining high sensitivity. An autobalancing differential photodetector automates common-mode noise rejection, removing the need for manually adjustable optics, and a compact laser module conserves space compared to a typical laser mount. The result is a simple, easy-to-use, and relatively low cost system that achieves a sensitivity of 16.7 µV (within a factor of 5 of the shot noise limit), and reliably detects action potentials from Human-induced pluripotent stem cell (HiPSC) derived cardiomyocytes. This setup can be further improved to within 1.5 dB of the shot noise limit by filtering out power-line interference.

2.
Opt Express ; 30(5): 7340-7341, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299498

RESUMEN

In Sec. 6 (polarization monitor) of our recent publication [Opt. Express29(5), 7024 (2021)10.1364/OE.417455], we assumed a small value of δ. This is however incorrect. The correct approximation for small ß leads to the updated Eqs. (10)-(11), resulting in a corrected Fig. 12.

3.
Opt Express ; 29(5): 7024-7048, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726212

RESUMEN

We present an improved active fiber-based retroreflector (AFR) providing high-quality wavefront-retracing anti-parallel laser beams in the near UV. We use our improved AFR for first-order Doppler-shift suppression in precision spectroscopy of atomic hydrogen, but our setup can be adapted to other applications where wavefront-retracing beams with defined laser polarization are important. We demonstrate how weak aberrations produced by the fiber collimator may remain unobserved in the intensity of the collimated beam but limit the performance of the AFR. Our general results on characterizing these aberrations with a caustic measurement can be applied to any system where a collimated high-quality laser beam is required. Extending the collimator design process by wave optics propagation tools, we achieved a four-lens collimator for the wavelength range 380-486 nm with the beam quality factor of M2 ≃ 1.02, limited only by the not exactly Gaussian beam profile from the single-mode fiber. Furthermore, we implemented precise fiber-collimator alignment and improved the collimation control by combining a precision motor with a piezo actuator. Moreover, we stabilized the intensity of the wavefront-retracing beams and added in-situ monitoring of polarization from polarimetry of the retroreflected light.

4.
Science ; 370(6520): 1061-1066, 2020 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-33243883

RESUMEN

We have performed two-photon ultraviolet direct frequency comb spectroscopy on the 1S-3S transition in atomic hydrogen to illuminate the so-called proton radius puzzle and to demonstrate the potential of this method. The proton radius puzzle is a significant discrepancy between data obtained with muonic hydrogen and regular atomic hydrogen that could not be explained within the framework of quantum electrodynamics. By combining our result [f 1S-3S = 2,922,743,278,665.79(72) kilohertz] with a previous measurement of the 1S-2S transition frequency, we obtained new values for the Rydberg constant [R ∞ = 10,973,731.568226(38) per meter] and the proton charge radius [r p = 0.8482(38) femtometers]. This result favors the muonic value over the world-average data as presented by the most recent published CODATA 2014 adjustment.

5.
Science ; 358(6359): 79-85, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28983046

RESUMEN

At the core of the "proton radius puzzle" is a four-standard deviation discrepancy between the proton root-mean-square charge radii (rp) determined from the regular hydrogen (H) and the muonic hydrogen (µp) atoms. Using a cryogenic beam of H atoms, we measured the 2S-4P transition frequency in H, yielding the values of the Rydberg constant R∞ = 10973731.568076(96) per meterand rp = 0.8335(95) femtometer. Our rp value is 3.3 combined standard deviations smaller than the previous H world data, but in good agreement with the µp value. We motivate an asymmetric fit function, which eliminates line shifts from quantum interference of neighboring atomic resonances.

6.
Phys Rev Lett ; 114(10): 100405, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25815912

RESUMEN

We propose and demonstrate a new scheme for atom interferometry, using light pulses inside an optical cavity as matter wave beam splitters. The cavity provides power enhancement, spatial filtering, and a precise beam geometry, enabling new techniques such as low power beam splitters (<100 µW), large momentum transfer beam splitters with modest power, or new self-aligned interferometer geometries utilizing the transverse modes of the optical cavity. As a first demonstration, we obtain Ramsey-Raman fringes with >75% contrast and measure the acceleration due to gravity, g, to 60 µg/sqrt[Hz] resolution in a Mach-Zehnder geometry. We use >10(7) cesium atoms in the compact mode volume (600 µm 1/e(2) waist) of the cavity and show trapping of atoms in higher transverse modes. This work paves the way toward compact, high sensitivity, multiaxis interferometry.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA