Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Appl ; 34(2): e2947, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38305124

RESUMEN

Revegetation plantings are a key activity in farmland restoration and are commonly assumed to support biotic communities that, with time, replicate those of reference habitats. Restoration outcomes, however, can be highly variable and difficult to predict; hence there is value in quantifying restoration success to improve future efforts. We test the expectation that, over time, revegetation will restore bird communities to match those in reference habitats; and assess whether specific planting attributes enhance restoration success. We surveyed birds in 255 sites in south-east Australia, arranged along a restoration gradient encompassing three habitat types: unrestored farmland (paddocks), revegetation plantings (comprising a chronosequence up to 52 years old) and reference habitats (remnant native vegetation). Surveys were undertaken in 2006/2007 and again in 2019, with data used to compare bird assemblages between habitat types. We also determined whether, in the intervening 12 years, bird communities in revegetation had shifted toward reference habitats on the restoration gradient. Our results showed that each habitat contained a unique bird community and that, over time, assemblages in revegetation diverged away from those in unrestored farmland and converged toward those in reference habitats. Two planting attributes influenced this transition: the bird assemblages of revegetation were more likely to have diverged away from those of unrestored farmland (with scattered mature trees) 12 years later if they were located in areas with more surrounding tree cover, and were mostly ungrazed by livestock (compared with grazed plantings). Our results highlight three key ways in which revegetation contributes to farmland restoration: (1) by supporting richer and more diverse bird assemblages than unrestored farmland, (2) by enhancing beta diversity in rural landscapes through the addition of a unique bird community, and (3) by shifting bird assemblages toward those found in reference habitats over time. However, revegetation plantings did not replicate reference habitats by ~40-50 years in our region, and complete convergence may take centuries. These findings have implications for environmental offset programs and mean that effective conservation in farmland environments depends on the retention and protection of natural and seminatural habitats as a parallel management strategy to complement restoration.


Asunto(s)
Biota , Aves , Animales , Granjas , Ganado , Árboles
2.
Ecol Evol ; 12(6): e8956, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784040

RESUMEN

Ecosystem engineers that modify the soil and ground-layer properties exert a strong influence on vegetation communities in ecosystems worldwide. Understanding the interactions between animal engineers and vegetation is challenging when in the presence of large herbivores, as many vegetation communities are simultaneously affected by both engineering and herbivory. The superb lyrebird Menura novaehollandiae, an ecosystem engineer in wet forests of south-eastern Australia, extensively modifies litter and soil on the forest floor. The aim of this study was to disentangle the impacts of engineering by lyrebirds and herbivory by large mammals on the composition and structure of ground-layer vegetation. We carried out a 2-year, manipulative exclusion experiment in the Central Highlands of Victoria, Australia. We compared three treatments: fenced plots with simulated lyrebird foraging; fenced plots excluding herbivores and lyrebirds; and open controls. This design allowed assessment of the relative impacts of engineering and herbivory on germination rates, seedling density, vegetation cover and structure, and community composition. Engineering by lyrebirds enhanced the germination of seeds in the litter layer. After 2 years, more than double the number of germinants were present in "engineered" than "non-engineered" plots. Engineering did not affect the density of seedlings, but herbivory had strong detrimental effects. Herbivory also reduced the floristic richness and structural complexity (<0.5 m) of forest vegetation, including the cover of herbs. Neither process altered the floristic composition of the vegetation within the 2-year study period. Ecosystem engineering by lyrebirds and herbivory by large mammals both influence the structure of forest-floor vegetation. The twofold increase in seeds stimulated to germinate by engineering may contribute to the evolutionary adaptation of plants by allowing greater phenotypic expression and selection than would otherwise occur. Over long timescales, engineering and herbivory likely combine to maintain a more-open forest floor conducive to ongoing ecosystem engineering by lyrebirds.

3.
Curr Biol ; 31(9): 1970-1976.e4, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33636120

RESUMEN

Darwin argued that females' "taste for the beautiful" drives the evolution of male extravagance,1 but sexual selection theory also predicts that extravagant ornaments can arise from sexual conflict and deception.2,3 The sensory trap hypothesis posits that elaborate sexual signals can evolve via antagonistic coevolution whereby one sex uses deceptive mimicry to manipulate the opposite sex into mating.3 Here, the success of deceptive mimicry depends on whether it matches the receiver's percept of the model,4 and so has little in common with concepts of aesthetic judgement and 'beauty.'1,5-9 We report that during their song and dance displays,10 male superb lyrebirds (Menura novaehollandiae) create an elaborate acoustic illusion of a mixed-species mobbing flock. Acoustic analysis showed that males mimicked the mobbing alarm calls of multiple species calling together, enhancing the illusion by also vocally imitating the wingbeats of small birds. A playback experiment confirmed that this illusion was sufficient to fool avian receivers. Furthermore, males produced this mimicry only (1) when females attempted to exit male display arenas, and (2) during the lyrebirds' unusually long copulation, suggesting that the mimicry aims to prevent females from prematurely terminating these crucial sexual interactions. Such deceptive behavior by males should select for perceptual acuity in females, prompting an inter-sexual co-evolutionary arms race between male mimetic accuracy and discrimination by females. In this way the elaboration of the complex avian vocalizations we call 'song' could be driven by sexual conflict, rather than a female's preference for male extravagance.


Asunto(s)
Acoso Escolar , Ilusiones , Acústica , Animales , Aves , Copulación , Cortejo , Femenino , Masculino , Conducta Sexual Animal , Vocalización Animal
4.
Ecol Appl ; 31(1): e02219, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32810887

RESUMEN

Ecosystem engineers physically modify their environment, thereby altering habitats for other organisms. Increasingly, "engineers" are recognized as an important focus for conservation and ecological restoration because their actions affect a range of ecosystem processes and thereby influence how ecosystems function. The Superb Lyrebird Menura novaehollandiae is proposed as an ecosystem engineer in forests of southeastern Australia due to the volume of soil and litter it turns over when foraging. We measured the seasonal and spatial patterns of foraging by Lyrebirds and the amount of soil displaced in forests in the Central Highlands, Victoria. We tested the effects of foraging on litter, soil nutrients and soil physical properties by using an experimental approach with three treatments: Lyrebird exclusion, Lyrebird exclusion with simulated foraging, and non-exclusion reference plots. Treatments were replicated in three forest types in each of three forest blocks. Lyrebirds foraged extensively in all forest types in all seasons. On average, Lyrebirds displaced 155.7 Mg/ha of litter and soil in a 12-month period. Greater displacement occurred where vegetation complexity (<50 cm height) was low. After two years of Lyrebird exclusion, soil compaction (top 7.5 cm) increased by 37% in exclusion plots compared with baseline measures, while in unfenced plots it decreased by 22%. Litter depth was almost three times greater in fenced than unfenced plots. Soil moisture, pH, and soil nutrients showed no difference between treatments. The enormous extent of litter and soil turned over by the Superb Lyrebird is unparalleled by any other vertebrate soil engineer in terrestrial ecosystems globally. The profound influence of such foraging activity on forest ecosystems is magnified by its year-round pattern and widespread distribution. The disturbance regime that Lyrebirds impose has implications for diverse ecosystem processes including decomposition and nutrient cycling, the composition of litter- and soil-dwelling invertebrate communities, the shaping of ground-layer vegetation patterns, and fire behavior and post-fire ecosystem recovery. Maintaining Lyrebird populations as a key facilitator of ecosystem function is now timely and critical as unprecedented wildfires in eastern Australia in summer 2019-2020 have severely burned ~12 million ha of forest, including ~30% of the geographic range of the Superb Lyrebird.


Asunto(s)
Ecosistema , Incendios , Bosques , Suelo , Árboles , Victoria
5.
Curr Biol ; 23(12): 1132-5, 2013 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-23746637

RESUMEN

All human cultures have music and dance, and the two activities are so closely integrated that many languages use just one word to describe both. Recent research points to a deep cognitive connection between music and dance-like movements in humans, fueling speculation that music and dance have coevolved and prompting the need for studies of audiovisual displays in other animals. However, little is known about how nonhuman animals integrate acoustic and movement display components. One striking property of human displays is that performers coordinate dance with music by matching types of dance movements with types of music, as when dancers waltz to waltz music. Here, we show that a bird also temporally coordinates a repertoire of song types with a repertoire of dance-like movements. During displays, male superb lyrebirds (Menura novaehollandiae) sing four different song types, matching each with a unique set of movements and delivering song and dance types in a predictable sequence. Crucially, display movements are both unnecessary for the production of sound and voluntary, because males sometimes sing without dancing. Thus, the coordination of independently produced repertoires of acoustic and movement signals is not a uniquely human trait.


Asunto(s)
Percepción Auditiva/fisiología , Aves/fisiología , Baile , Locomoción , Actividad Motora/fisiología , Música , Canto , Estimulación Acústica , Animales , Cognición , Humanos , Masculino , Patrones de Reconocimiento Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...