Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ChemSusChem ; 17(9): e202301591, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38179896

RESUMEN

Molybdenum carbide supported on activated carbon (ß-Mo2C/AC) has been tested as catalyst in the reductive catalytic fractionation (RCF) of lignocellulosic biomass both in batch and in Flow-Through (FT) reaction systems. High phenolic monomer yields (34 wt.%) and selectivity to monomers with reduced side alkyl chains (up to 80 wt.%) could be achieved in batch in the presence of hydrogen. FT-RCF were made with no hydrogen feed, thus via transfer hydrogenation from ethanol. Similar selectivity could be attained in FT-RCF using high catalyst/biomass ratios (0.6) and high molybdenum loading (35 wt.%) in the catalyst, although selectivity decreased with lower catalyst/biomass ratios or molybdenum contents. Regardless of these parameters, high delignification of the lignocellulosic biomass and similar monomer yields were observed in the FT mode (13-15 wt.%) while preserving the holocellulose fractions in the delignified pulp. FT-RCF system outperforms the batch reaction mode in the absence of hydrogen, both in terms of activity and selectivity to reduced monomers that is attributed to the two-step non-equilibrium processes and the removal of diffusional limitations that occur in the FT mode. Even though some molybdenum leaching was detected, the catalytic performance could be maintained with negligible loss of activity or selectivity for 15 consecutive runs.

2.
Biomolecules ; 12(4)2022 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-35454128

RESUMEN

Lignocellulosic residues have the potential for obtaining high value-added products that could be better valorized if biorefinery strategies are adopted. The debarking of short-rotation crops yields important amounts of residues that are currently underexploited as low-grade fuel and could be a renewable source of phenolic compounds and other important phytochemicals. The isolation of these compounds can be carried out by different methods, but for attaining an integral valorization of barks, a preliminary extraction step for phytochemicals should be included. Using optimized extraction methods based on Soxhlet extraction can be effective for the isolation of phenolic compounds with antioxidant properties. In this study, poplar bark (Populus Salicaceae) was used to obtain a series of extracts using five different solvents in a sequential extraction of 24 h each in a Soxhlet extractor. Selected solvents were put in contact with the bark sample raffinate following an increasing order of polarity: n-hexane, dichloromethane, ethyl acetate, methanol, and water. The oily residues of the extracts obtained after each extraction were further subjected to flash chromatography, and the fractions obtained were characterized by gas chromatography coupled with mass spectrometry (GC-MS). The total phenolic content (TPC) was determined using the Folin-Ciocalteu method, and the antioxidant activity (AOA) of the samples was evaluated in their reaction with the free radical 2,2-Diphenyl-picrylhydrazyl (DPPH method). Polar solvents allowed for higher individual extraction yields, with overall extraction yields at around 23% (dry, ash-free basis). Different compounds were identified, including hydrolyzable tannins, phenolic monomers such as catechol and vanillin, pentoses and hexoses, and other organic compounds such as long-chain alkanes, alcohols, and carboxylic acids, among others. An excellent correlation was found between TPC and antioxidant activity for the samples analyzed. The fractions obtained using methanol showed the highest phenolic content (608 µg of gallic acid equivalent (GAE)/mg) and the greatest antioxidant activity.


Asunto(s)
Populus , Salicaceae , Antioxidantes/química , Metanol/química , Fenoles/química , Fitoquímicos/química , Corteza de la Planta/química , Extractos Vegetales/química , Solventes/química
3.
Biomolecules ; 10(9)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962141

RESUMEN

Lignocellulosic materials are promising alternatives to non-renewable fossil sources when producing aromatic compounds. Lignins from Populus salicaceae. Pinus radiata and Pinus pinaster from industrial wastes and biorefinery effluents were isolated and characterized. Lignin was depolymerized using homogenous (NaOH) and heterogeneous (Ni-, Cu- or Ni-Cu-hydrotalcites) base catalysis and catalytic hydrogenolysis using Ru/C. When homogeneous base catalyzed depolymerization (BCD) and Ru/C hydrogenolysis were combined on poplar lignin, the aromatics amount was ca. 11 wt.%. Monomer distributions changed depending on the feedstock and the reaction conditions. Aqueous NaOH produced cleavage of the alkyl side chain that was preserved when using modified hydrotalcite catalysts or Ru/C-catalyzed hydrogenolysis in ethanol. Depolymerization using hydrotalcite catalysts in ethanol produced monomers bearing carbonyl groups on the alkyl side chain. The analysis of the reaction mixtures was done by size exclusion chromatography (SEC) and diffusion ordered nuclear magnetic resonance spectroscopy (DOSY NMR). 31P NMR and heteronuclear single quantum coherence spectroscopy (HSQC) were also used in this study. The content in poly-(hydroxy)-aromatic ethers in the reaction mixtures decreased upon thermal treatments in ethanol. It was concluded that thermo-solvolysis is key in lignin depolymerization, and that the synergistic effect of Ni and Cu provided monomers with oxidized alkyl side chains.


Asunto(s)
Hidrocarburos Aromáticos/química , Lignina/química , Pinus/química , Populus/química , Catálisis , Cromatografía en Gel/métodos , Cobre/química , Etanol/química , Hidrocarburos Aromáticos/metabolismo , Lignina/aislamiento & purificación , Lignina/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Níquel/química , Polimerizacion , Temperatura , Agua/química , Difracción de Rayos X/métodos
4.
Nat Prod Commun ; 12(5): 695-698, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30496678

RESUMEN

The cobalt crust fungus Terana coerulea (Phanerochaetaceae family) was selected for a bio-guided study after an ethnobotanical survey at the Irati's Forest (Navarra, Spain) for its local use as antibiotic. Six extracts of increasing polarity, from hexane to hot water, were obtained from powdered dry fungi and tested for cytotoxicity against four human tumour cell lines and one non-tumour primary cell culture. From the most cytotoxic, EtOAc extract, we isolated and identified three terphenyl neolignans: two of them new natural products, named corticins D and E, and one previously described as corticin A, whose earlier structure has been revised. Their structural elucidation and biological evaluation as cytotoxic agents are described.


Asunto(s)
Basidiomycota/química , Lignanos/química , Compuestos de Terfenilo/química , Estructura Molecular , Compuestos de Terfenilo/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...