Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836293

RESUMEN

This investigation explores the potential of electrochemical impedance spectroscopy (EIS) in evaluating graphene-based cementitious nanocomposites, focusing on their physical and structural properties, i.e., electrical resistivity, porosity, and fracture toughness. EIS was employed to study cement mixtures with varying graphene nanoplatelet (xGnP) concentrations (0.05-0.40% per dry cement weight), whereas flexural tests assessed fracture toughness and porosimetry analyses investigated the structural characteristics. The research demonstrated that the electrical resistivity initially decreased with increasing xGnP content, leveling off at higher concentrations. The inclusion of xGnPs correlated with an increase in the total porosity of the cement mixtures, which was indicated by both EIS and porosimetry measurements. Finally, a linear correlation emerged between fracture toughness and electrical resistivity, contributing also to underscore the use of EIS as a potent non-destructive tool for evaluating the physical and mechanical properties of conductive nano-reinforced cementitious nanocomposites.

2.
Nanotechnology ; 33(5)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34619661

RESUMEN

Carbon-based nanomaterials (CBNs), such as graphene and carbon nanotubes, display advanced physical and chemical properties, which has led to their widespread applications. One of these applications includes the incorporation of CBNs into cementitious materials in the form of aqueous dispersions. The main issue that arises in this context is that currently no established protocol exists as far as characterizing the dispersions. In the present article, an innovative method for quick evaluation and quantification of graphene oxide (GO) dispersions is proposed. The proposed method is electrical impedance spectroscopy (EIS) with an impedance sensor. The novelty lies on the exploitation of a small sensor for on-site (field) direct dielectric measurements with the application of alternating current. Five different concentrations of GO dispersions were studied by applying EIS and for various accumulated ultrasonic energies. The low GO concentration leads to high impedance values due to low formed current network. Two opposing mechanisms were revealed during the accumulation of ultrasonic energy, that are taking place simultaneously: breakage of the agglomerates that facilitates the flow of the electric current due to the formation of a better dispersed network, nevertheless the surface hydrophilic structure of the GO is damaged with the high accumulated ultrasonic energy. The dielectric measurements were exploited to express an appropriate quantitative 'quality index' to facilitate with the dispersion control of the nanostructures. An intermediate concentration of GO is suggested (about 0.15 wt% of the binder materials) to be optimal for the specific engineering application, ultrasonicated at approximately 30 to 65 kJ. The investigated methodology is highly novel and displays a high potential to be applied in-field applications where CBNs must be incorporated in building materials.

3.
Nanomaterials (Basel) ; 11(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499034

RESUMEN

The main scope of this work is to develop nano-carbon-based mixed matrix cellulose acetate membranes (MMMs) for the potential use in both gas and liquid separation processes. For this purpose, a variety of mixed matrix membranes, consisting of cellulose acetate (CA) polymer and carbon nanotubes as additive material were prepared, characterized, and tested. Multi-walled carbon nanotubes (MWCNTs) were used as filler material and diacetone alcohol (DAA) as solvent. The first main objective towards highly efficient composite membranes was the proper preparation of agglomerate-free MWCNTs dispersions. Rotor-stator system (RS) and ultrasonic sonotrode (USS) were used to achieve the nanofillers' dispersion. In addition, the first results of the application of the three-roll mill (TRM) technology in the filler dispersion achieved were promising. The filler material, MWCNTs, was characterized by scanning electron microscopy (SEM) and liquid nitrogen (LN2) adsorption-desorption isotherms at 77 K. The derivatives CA-based mixed matrix membranes were characterized by tensile strength and water contact angle measurements, impedance spectroscopy, gas permeability/selectivity measurements, and water permeability tests. The studied membranes provide remarkable water permeation properties, 12-109 L/m2/h/bar, and also good separation factors of carbon dioxide and helium separations. Specifically, a separation factor of 87 for 10% He/N2 feed concentration and a selectivity value of 55.4 for 10% CO2/CH4 feed concentration were achieved.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA