Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
World J Microbiol Biotechnol ; 40(8): 250, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910219

RESUMEN

Aeromonas hydrophila, an opportunistic warm water pathogen, has always been a threat to aquaculture, leading to substantial economic losses. Vaccination of the cultured fish would effectively prevent Aeromoniasis, and recent advancements in nanotechnology show promise for efficacious vaccines. Oral delivery would be the most practical and convenient method of vaccine delivery in a grow-out pond. This study studied the immunogenicity and protective efficacy of a nanoparticle-loaded outer membrane protein A from A. hydrophila in the zebrafish model. The protein was over-expressed, purified, and encapsulated using poly lactic-co-glycolic acid (PLGA) nanoparticles via the double emulsion method. The PLGA nanoparticles loaded with recombinant OmpA (rOmpA) exhibited a size of 295 ± 15.1 nm, an encapsulation efficiency of 72.52%, and a polydispersity index of 0.292 ± 0.07. Scanning electron microscopy confirmed the spherical and isolated nature of the PLGA-rOmpA nanoparticles. The protective efficacy in A. hydrophila-infected zebrafish after oral administration of the nanovaccine resulted in relative percentage survival of 77.7. Gene expression studies showed significant upregulation of immune genes in the vaccinated fish. The results demonstrate the usefulness of oral administration of nanovaccine-loaded rOmpA as a potential vaccine since it induced a robust immune response and conferred adequate protection against A. hydrophila in zebrafish, Danio rerio.


Asunto(s)
Aeromonas hydrophila , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Nanopartículas , Proteínas Recombinantes , Pez Cebra , Animales , Pez Cebra/inmunología , Aeromonas hydrophila/inmunología , Aeromonas hydrophila/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/genética , Administración Oral , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Vacunación , Nanovacunas
2.
J Microencapsul ; 41(5): 390-401, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945157

RESUMEN

Green-synthesis of biodegradable polymeric curcumin-nanoparticles using affordable biodegradable polymers to enhance curcumin's solubility and anti-oxidative potential. The curcumin-nanoparticle was prepared based on the ionic-interaction method without using any chemical surfactants, and the particle-size, zeta-potential, surface-morphology, entrapmentefficiency, and in-vitro drug release study were used to optimise the formulation. The antioxidant activity was investigated using H2DCFDA staining in the zebrafish (Danio rerio) model. The mean-diameter of blank nanoparticles was 178.2 nm (±4.69), and that of curcuminnanoparticles was about 227.7 nm (±10.4), with a PDI value of 0.312 (±0.023) and 0.360 (±0.02). The encapsulation-efficacy was found to be 34% (±1.8), with significantly reduced oxidative-stress and toxicity (∼5 times) in the zebrafish model compared to standard curcumin. The results suggested that the current way of encapsulating curcumin using affordable, biodegradable, natural polymers could be a better approach to enhancing curcumin's water solubility and bioactivity, which could further be translated into potential therapeutics.


Asunto(s)
Antioxidantes , Quitosano , Curcumina , Tecnología Química Verde , Goma Arábiga , Nanopartículas , Pez Cebra , Animales , Curcumina/farmacología , Curcumina/química , Curcumina/administración & dosificación , Curcumina/farmacocinética , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/administración & dosificación , Quitosano/química , Goma Arábiga/química , Portadores de Fármacos/química , Liberación de Fármacos , Solubilidad , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula
3.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653725

RESUMEN

AIMS: Acinetobacter baumannii is a nosocomial pathogen known to be multidrug-resistant (MDR), especially to drugs of the carbapenem class. Several factors contribute to resistance, including efflux pumps, ß-lactamases, alteration of target sites, and permeability defects. In addition, outer membrane proteins (OMPs), like porins are involved in the passage of antibiotics, and their alteration could lead to resistance development. This study aimed to explore the possible involvement of porins and OMPs in developing carbapenem resistance due to differential expression. METHODS AND RESULTS: The antibiotic-susceptible and MDR isolates of A. baumannii were first studied for differences in their transcriptional levels of OMP expression and OMP profiles. The antibiotic-susceptible isolates were further treated with imipenem, and it was found that the omp genes were differentially expressed. Six of the nine genes studied were upregulated at 1 h of exposure to imipenem. Their expression gradually decreased with time, further confirmed by their OMP profile and two-dimensional gel electrophoresis. CONCLUSIONS: This study could identify OMPs that were differentially expressed on exposure to imipenem. Hence, this study provides insights into the role of specific OMPs in antibiotic resistance in A. baumannii.


Asunto(s)
Acinetobacter baumannii , Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Imipenem , Pruebas de Sensibilidad Microbiana , Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/metabolismo , Imipenem/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Antibacterianos/farmacología , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Acinetobacter/microbiología , Humanos , Porinas/genética , Porinas/metabolismo
4.
Mol Biotechnol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512427

RESUMEN

Aquaculture production has been incurring economic losses due to infectious diseases by opportunistic pathogens like Aeromonas hydrophila, a bacterial agent that commonly affects warm water aquacultured fish. Developing an effective vaccine with an appropriate delivery system can elicit an immune response that would be a useful disease management strategy through prevention. The most practical method of administration would be the oral delivery of vaccine developed through nano-biotechnology. In this study, the gene encoding an outer membrane protein, maltoporin, of A. hydrophila, was identified, sequenced, and studied using bioinformatics tools to examine its potential as a vaccine candidate. Using a double emulsion method, the molecule was cloned, over-expressed, and encapsulated in a biodegradable polymer polylactic-co-glycolic acid (PLGA). The immunogenicity of maltoporin was identified through in silico analysis and thus taken up for nanovaccine preparation. The encapsulation efficiency of maltoporin was 63%, with an in vitro release of 55% protein in 48 h. The particle size and morphology of the encapsulated protein exhibited properties that could induce stability and function as an effective carrier system to deliver the antigen to the site and trigger immune response. Results show promise that the PLGA-mediated delivery system could be a potential carrier in developing a fish vaccine via oral administration. They provide insight for developing nanovaccine, since sustained in vitro release and biocompatibility were observed. There is further scope to study the immune response and examine the protective immunity induced by the nanoparticle-encapsulated maltoporin by oral delivery to fish.

5.
Microb Pathog ; 185: 106429, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37940062

RESUMEN

Eco-friendly alternatives such as probiotics are needed to prevent economically relevant infectious diseases for a successful disease-free harvest in aquaculture. The use of antibiotics has been the favored practice, but its empirical and indiscriminate use has led to antibiotic resistance in the aquatic environment and residues in the food fish. With this rationale, a probiotic was isolated from tilapia, a commercially important cultured fish worldwide. The characteristics of the probiotic were checked against common bacterial pathogens affecting aquaculture. In vitro tests demonstrated the inhibitory effects of the isolated probiotic on the growth of Aeromonas hydrophila, Edwardsiella tarda, Vibrio anguillarum, and V. alginolyticus. The candidate probiotic, referred to as TLDK301120C24, was identified as Bacillus subtilis by a battery of biochemical tests and genotypic confirmation by 16S rDNA sequencing. The in vitro results revealed the ability of the probiotic to withstand the gut conditions that included pH range of 3-9, salt concentration of 0.5-6%, and bile salt concentration of up to 6%. The isolate could hydrolyze starch (12-14 mm clearance zone), protein (20-22 mm clearance zone), and cellulose (22-24 mm clearance zone). Further, the inhibitory ability of the probiotic against aquatic pathogens was determined in vivo using gnotobiotic zebrafish by employing a novel approach that involved tagging the probiotic with a red fluorescent protein and the pathogens with a green fluorescent protein, respectively. The colonizing ability of probiotics and its inhibitory effects against the pathogens were evaluated by fluorescence microscopy, PCR, and estimation of viable counts in LBA + Amp plates. Finally, the competitive inhibition and exclusion of fish pathogens A. hydrophila and E. tarda by B. subtilis was confirmed semi-quantitatively, through challenge experiments. This study shows the potential of B. subtilis as a probiotic and its excellent ability to inhibit major fish pathogens in vivo and in vitro. It also shows promise as a potent substitute for antibiotics.


Asunto(s)
Enfermedades de los Peces , Probióticos , Tilapia , Animales , Bacillus subtilis/genética , Pez Cebra , Probióticos/farmacología , Antibacterianos/farmacología , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/microbiología
6.
ACS Infect Dis ; 9(11): 2072-2092, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37910638

RESUMEN

Despite colossal achievements in antibiotic therapy in recent decades, drug-resistant pathogens have remained a leading cause of death and economic loss globally. One such WHO-critical group pathogen is Salmonella. The extensive and inappropriate treatments for Salmonella infections have led from multi-drug resistance (MDR) to extensive drug resistance (XDR). The synergy between efflux-mediated systems and outer membrane proteins (OMPs) may favor MDR in Salmonella. Differential expression of the efflux system and OMPs (influx) and positional mutations are the factors that can be correlated to the development of drug resistance. Insights into the mechanism of influx and efflux of antibiotics can aid in developing a structurally stable molecule that can be proficient at escaping from the resistance loops in Salmonella. Understanding the strategic responsibilities and developing policies to address the surge of drug resistance at the national, regional, and global levels are the needs of the hour. In this Review, we attempt to aggregate all the available research findings and delineate the resistance mechanisms by dissecting the involvement of OMPs and efflux systems. Integrating major OMPs and the efflux system's differential expression and positional mutation in Salmonella may provide insight into developing strategic therapies for one health application.


Asunto(s)
Proteínas de la Membrana , Proteínas de Transporte de Membrana , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Salmonella/genética , Salmonella/metabolismo
7.
Inorg Chem ; 62(49): 20439-20449, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38001041

RESUMEN

High-valent metal-fluoride complexes are currently being explored for concerted proton-electron transfer (CPET) reactions, the driving force being the high bond dissociation energy of H-F (BDEH-F = 135 kcal/mol) that is formed after the reaction. Ni(III)-fluoride-based complexes on the pyridine dicarboxamide pincer ligand framework have been utilized for CPET reactions toward phenols and hydrocarbons. We have replaced the central pyridine ligand with an N-heterocyclic carbene carbene to probe its effect in both stabilizing the high-valent Ni(III) state and its ability to initiate CPET reactions. We report a monomeric carbene-diamide-based Ni(II)-fluoride pincer complex that was characterized through 1H/19F NMR, mass spectrometry, UV-vis, and X-ray crystallography analysis. Although carbenes and deprotonated carboxamides in the Ni(II)-fluoride complex are expected to stabilize the Ni(III) state upon oxidation, the Ni(III)/Ni(II) redox process occurred at very high potential (0.87 V vs Fc+/Fc, dichloromethane) and was irreversible. Structural studies indicate significant distortion in the imidazolium "NCN" carbene plane of Ni(II)-fluoride caused by the formation of six-membered metallacycles. The high-valent NiIII-fluoride analogue was synthesized by the addition of 1.0 equiv CTAN (ceric tetrabutylammonium nitrate) in dichloromethane at -20 °C which was characterized by UV-vis, mass spectrometry, and EPR spectroscopy. Density functional theory studies indicate that the Ni-carbene bond elongated, while the Ni-F bond shortened upon oxidation to the Ni(III) species. The high-valent Ni(III)-fluoride was found to react with the substituted phenols. Analysis of the KIE and linear free energy relationship correlates well with the CPET nature of the reaction. Preliminary analysis indicates that the CPET is asynchronous and is primarily driven by the E0' of the Ni(III)-fluoride complex.

8.
Vaccines (Basel) ; 11(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37896958

RESUMEN

The application of nanotechnology in aquaculture for developing efficient vaccines has shown great potential in recent years. Nanovaccination, which involves encapsulating antigens of fish pathogens in various polymeric materials and nanoparticles, can afford protection to the antigens and a sustained release of the molecule. Oral administration of nanoparticles would be a convenient and cost-effective method for delivering vaccines in aquaculture while eliminating the need for stressful, labour-intensive injectables. The small size of nanoparticles allows them to overcome the degradative digestive enzymes and help deliver antigens to the target site of the fish more effectively. This targeted-delivery approach would help trigger cellular and humoral immune responses more efficiently, thereby enhancing the protective efficacy of vaccines. This is particularly relevant for combating diseases caused by pathogens like Aeromonas hydrophila, a major fish pathogen responsible for significant morbidity and mortality in the aquaculture sector. While the use of nanoparticle-based vaccines in aquaculture has shown promise, concerns exist about the potential toxicity associated with certain types of nanoparticles. Some nanoparticles have been found to exhibit varying degrees of toxicity, and their safety profiles need to be thoroughly assessed before widespread application. The introduction of nanovaccines has opened new vistas for improving aquaculture healthcare, but must be evaluated for potential toxicity before aquaculture applications. Details of nanovaccines and their mode of action, with a focus on protecting fish from infections and outbreaks caused by the ubiquitous opportunistic pathogen A. hydrophila, are reviewed here.

9.
Artículo en Inglés | MEDLINE | ID: mdl-37486455

RESUMEN

The indiscriminate use of antibiotics in aquaculture has led to the emergence of resistance; hence, eco-friendly, host-specific alternatives to mitigate bacterial infections have become imminent. In this study, bacteria that could possibly serve as probiotics were isolated and evaluated for their efficacy with in vitro experiments and in vivo zebrafish gut model. One isolate from each of the 23 rohu fish (Labeo rohita) was shortlisted after preliminary screening of several isolates and tested for their ability to inhibit two important warm water bacterial fish pathogens, Aeromonas hydrophila, and Edwardsiella tarda. An isolate (RODK28110C3) that showed broad-spectrum inhibitory activity against a battery of different isolates of the two fish pathogens included in this study and maintained in our repository was selected for further characterization. The culture was identified phenotypically as Bacillus subtilis and confirmed by 16S rDNA sequencing. The isolate was able to hydrolyze fish feed constituents that include starch, protein, and cellulose. Further in vitro tests ensured that the potential isolate with probiotic attributes could tolerate different gut conditions, which included a range of pH, salinity, and varying concentrations of bile salt. Exposure of 4 days post fertilization zebrafish embryos to the RFP-tagged isolate confirmed the colonization of B. subtilis in the gut of the zebrafish embryo, which is an important attribute of a probiotic. The isolate was able to inhibit both A. hydrophila and E. tarda in gnotobiotic zebrafish embryo in triplicate. The study demonstrates the probiotic characteristics of the B. subtilis isolated from L. rohita and its ability to inhibit A. hydrophila and E. tarda using in vitro conditions and in the zebrafish gut and could serve as an effective alternative to antibiotics in aquaculture.

10.
Can J Microbiol ; 69(11): 449-462, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364377

RESUMEN

Acinetobacter baumannii is an opportunistic pathogen known for causing hospital-acquired infections. The natural habitat includes soil, water, sewage, and drains, but it is also detected in infected individuals' blood, pus, and respiratory pathways. Due to its resilient nature, it is known to be a causative agent for outbreaks. Therefore, it is crucial to understand the genetic similarity between clinical and environmental isolates. The study aimed to find the genetic relationships between clinical and environmental isolates using PCR-based typing methods such as enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), random amplified polymorphic DNA (RAPD), and repetitive extragenic palindromic sequence-based PCR (Rep-PCR). Additionally, outer membrane protein (OMP) and whole cell protein (WCP) profiles were also used. The PCR-based methods, ERIC-PCR and Rep-PCR, showed decreased genetic similarity between clinical and environmental isolates (66% and 58%, respectively). However, RAPD showed relatively higher genetic similarity (91%). The OMP and WCP profiles showed varied banding patterns between the clinical and environmental isolates in the 29-43 kDa region. The PCR-based methods proved to be a reliable and reproducible technique. The OMP and WCP profiles, though not as discriminatory as the molecular typing methods, could help identify the most and least commonly occurring protein bands and thus help in typing clinical and environmental A. baumannii isolates.


Asunto(s)
Acinetobacter baumannii , Humanos , Técnica del ADN Polimorfo Amplificado Aleatorio , Acinetobacter baumannii/genética , Dermatoglifia del ADN/métodos , Técnicas de Tipificación Bacteriana/métodos , ADN Bacteriano/genética , Reacción en Cadena de la Polimerasa/métodos
11.
J Phys Chem A ; 127(21): 4660-4669, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37209129

RESUMEN

The reaction of atomic carbon, C(3P), with H2CO has been investigated using the direct dynamics trajectory surface hopping (DDTSH) method with Tully's fewest switches algorithm. The lowest lying ground triplet and single states are considered for the dynamics study at a reagent collision energy of 8.0 kcal/mol. From the trajectory calculations, we observed that CH2 + CO and H + HCCO are the two major product channels for the title reaction. The insertion mechanism of the C(3P) + H2CO reaction is rather complex and is followed by three distinct intermediates with no entrance channel barrier to the reaction on the B3LYP/6-31G(d,p) potential energy surfaces. The triplet insertion complexes are formed by three different approaches; "Sideways", "End-on" and "Head-on" attack of the triplet carbon atom toward H2CO molecule. Our dynamics calculations predict a new product channel (H + HCCO(X 2A'')) with a contribution of ∼46% of the overall products formation via ketocarbene intermediate through "Head-on" approach. Despite the weak spin-orbit coupling (SOC) interactions, intersystem crossing (ISC) via a ketocarbene intermediate has a small but significant contribution, about 2.3%, for the CH2 + CO channel. To understand the kinetic isotope effects on the reaction dynamics, we have extended our study for the C(3P) + D2CO reaction. It is seen that isotopic substitution of both the H atoms has a small reduction in the extent of ISC dynamics for the carbene formation. Our results, certainly, reveal the importance of the ketocarbene intermediate and the H + HCCO products channel as one of the major product formation channels in the title reaction, which was not reported earlier.

12.
Arch Microbiol ; 205(4): 136, 2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-36961627

RESUMEN

Multi-drug resistance in Salmonella Typhi remains a public health concern globally. This study aimed to investigate the function of quinolone resistance determining region (QRDR) of gyrA and parC in ciprofloxacin (CIP) resistant isolates and examine the differential expression of outer membrane proteins (OMPs) on exposure to sub-lethal concentrations of CIP in S. Typhi. The CIP-resistant isolates were screened for mutations in the QRDR and analyzed for bacterial growth. Furthermore, major OMPs encoding genes such as ompF, lamB, yaeT, tolC, ompS1, and phoE were examined for differential expression under the sub-lethal concentrations of CIP by real-time PCR and SDS-PAGE. Notably, our study has shown a single-point mutation in gyrA at codon 83 (Ser83-tyrosine and Ser83-phenylalanine), also the rare amino acid substitution in parC gene at codon 80 (Glu80-glycine) in CIP-resistant isolates. Additionally, CIP-resistant isolates showed moderate growth compared to susceptible isolates. Although most of the OMP-encoding genes (tolC, ompS1, and phoE) showed some degree of upregulation, a significant level of upregulation (p < 0.05) was observed only for yaeT. However, ompF and lamB genes were down-regulated compared to CIP-susceptible isolates. Whereas OMPs profiling using SDS-PAGE did not show any changes in the banding pattern. These results provide valuable information on the QRDR mutation, and the difference in the growth, and expression of OMP-encoding genes in resistant and susceptible isolates of S. Typhi. This further provides insight into the involvement of QRDR mutation and OMPs associated with CIP resistance in S. Typhi.


Asunto(s)
Ciprofloxacina , Quinolonas , Ciprofloxacina/farmacología , Salmonella typhi/genética , Quinolonas/farmacología , Antibacterianos/farmacología , Proteínas de la Membrana/genética , Mutación , Girasa de ADN/genética , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana
13.
Lett Appl Microbiol ; 76(3)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36796791

RESUMEN

Acinetobacter baumannii is a well-known nosocomial pathogen that commonly inhabits soil and water and has been implicated in numerous hospital-acquired infections. The existing methods for detecting A. baumannii have several drawbacks, such as being time-consuming, expensive, labor-intensive, and unable to distinguish between closely related Acinetobacter species. Thus, it is important to have a simple, rapid, sensitive, and specific method for its detection. In this study, we developed a loop-mediated isothermal amplification (LAMP) assay using hydroxynaphthol blue dye to visualize A. baumannii by targeting its pgaD gene. The LAMP assay was performed using a simple dry bath and was shown to be specific and highly sensitive, as it could detect up to 10 pg/µl of A. baumannii DNA. Further, the optimized assay was used to detect A. baumannii in soil and water samples by culture-medium enrichment. Out of 27 samples tested, 14 (51.85%) samples were positive for A. baumannii through LAMP assay, while only 5 (18.51%) samples were found to be positive through conventional methods. Thus, the LAMP assay has been found to be a simple, rapid, sensitive, and specific method that can be used as a point-of-care diagnostic tool for detecting A. baumannii.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Suelo , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos
14.
Clin Chim Acta ; 539: 144-150, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36528050

RESUMEN

BACKGROUND AND AIM: Existing real-time reverse transcriptase PCR (RT-qPCR) has certain limitations for the point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) since it requires sophisticated instruments, reagents and skilled laboratory personnel. In this study, we evaluated an assay termed the reverse transcriptase-polymerase spiral reaction (RT-PSR) for rapid and visual detection of SARS-CoV-2. METHODS: The RT-PSR assay was optimized using RdRp gene and evaluated for the detection of SARS-CoV-2. The time of 60min and a temperature of 63°C was optimized for targeting the RNA-dependent RNA polymerase gene of SARS-CoV-2. The sensitivity of the assay was evaluated by diluting the in-vitro transcribed RNA, which amplifies as low as ten copies. RESULTS: The specific primers designed for this assay showed 100% specificity and did not react when tested with other lung infection-causing viruses and bacteria. The optimized assay was validated with 190 clinical samples in two phases, using automated RTPCR based TrueNat test, and the results were comparable. CONCLUSIONS: The RT-PSR assay can be considered for rapid and sensitive detection of SARS-CoV-2, particularly in resource-limited settings. To our knowledge, there is as yet no RT-PSR-based kit developed for SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , Prueba de COVID-19 , ADN Polimerasa Dirigida por ARN/genética , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Reacción en Cadena en Tiempo Real de la Polimerasa , ARN Viral/genética
15.
J Chem Phys ; 157(19): 194302, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36414438

RESUMEN

The photodissociation dynamics of 1-pyrazoline has been studied from its first excited electronic state (S1) using the Direct Dynamics Trajectory Surface-Hopping method in conjunction with Tully's fewest switches algorithm at the CASSCF(8,8)/6-31G* level of theory. After excitation of the molecule into the Franck-Condon region of the first excited state, S1, the molecule hops to the ground (S0) state quickly. The dissociation of one of the C-N bonds initially starts in the first excited state. Then, the molecule comes to the ground state (S0) via S1/S0 conical intersections, followed by complete dissociation in the ground state. Two different conical intersections are identified between the first excited singlet (S1) and the ground (S0) electronic states. One primary and three secondary dissociation channels are observed from our dynamics calculations of photodissociation of 1-pyrazoline that are in accord with the experimentally observed channels. After internal conversion to the ground electronic state (S0), the molecule dissociates to N2 and trimethylene biradical as the primary dissociation products. The trimethylene biradical then rearranges, leading to three secondary dissociation channels, N2 + cyclopropane, N2 + CH2 + C2H4, and N2 + CH3CHCH2. The major products formed from the trimethylene biradical in the secondary process is cyclopropane contributing about 78% of the overall products formation along with ∼12% propene and the rest ∼10% methylene (CH2) with ethene (C2H4).

16.
J Mater Chem B ; 10(41): 8462-8477, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36197075

RESUMEN

A new acrylamide monomer, N-isopropyl-N-(3-(isopropylamino)-3-oxopropyl)acrylamide (M3i), consisting of both isopropyl and isopropylamidopropyl moieties, has been synthesized from isopropylamine and N-isopropylacrylamide via an aza-Michael addition reaction followed by amidation with acryloyl chloride. The homopolymer of M3i (polyM3i) and a series of random copolymers of M3i and poly(ethylene glycol)methyl ether acrylate (PEGA: CH2CHCO2(CH2CH2O)nMe, Mn = 480, n = 9 on average) with varying compositions have been synthesized via reversible addition-fragmentation chain transfer polymerization using 2-(dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) as well as 1-phenylethyl phenyl dithioacetate (PEPD) as a RAFT agent. These polymers have been characterized by 1H NMR, FTIR, GPC, UV-Vis, fluorescence, TGDTA, DSC, DLS, and TEM techniques. A lower critical solution temperature (LCST) and glass transition temperature (Tg) for polyM3i prepared using DDMAT were observed at 17 and 133 °C, respectively, while for a polymer formed using PEPD, no LCST was observed until 0 °C and its observed Tg was found at 127.3 °C. The polymers are thermally stable up to 300 °C. Upon an increase in the M3i content in the copolymers, LCST decreases, Tg increases, and the apparent hydrodynamic diameter decreases. Moreover, the effects of concentration and the addition of urea and sodium chloride on the LCST of the copolymer with an LCST close to body temperature were studied. Owing to the incorporation of PEGA, a higher critical micellar concentration and larger TEM particle size of this copolymer were observed with respect to those of polyM3i. The usefulness of the micelles of the copolymers as nano-carriers for the drug doxorubicin was explored. The in vitro tumoricidal activity of the micelles of the doxorubicin-loaded copolymers was also assessed against Dalton's lymphoma cells.


Asunto(s)
Antineoplásicos , Éteres Metílicos , Micelas , Acrilamida , Cloruro de Sodio , Polímeros/química , Acrilamidas/química , Doxorrubicina/farmacología , Doxorrubicina/química , Antineoplásicos/farmacología , Antineoplásicos/química , Polietilenglicoles/química , Urea
17.
World J Microbiol Biotechnol ; 38(11): 190, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972699

RESUMEN

Multi-drug resistance (MDR) in Salmonella is one of the major reasons for foodborne outbreaks worldwide. Decreased susceptibility of Salmonella Typhi to first-line drugs such as ceftriaxone, ciprofloxacin, and azithromycin has raised concern. Reduced outer membrane proteins (OMPs) permeability and increased efflux pump transportation are considered to be the main reasons for the emergence of antibiotic resistance in Salmonella. The present study aimed to assess the expression of OMPs at sub-lethal concentrations of ceftriaxone in S. Typhi (Sl5037/BC, and Sl05). The S. Typhi strains were exposed to sub-MIC and half of the sub-MIC concentrations of ceftriaxone at three different time intervals (0 min, 40 min, and 180 min) and analyzed for differential expression of OMPs. Further, the expression variation of OMP encoding genes (yaeT, ompX, lamb, ompA, and ybfM) in response to ceftriaxone was evaluated using real-time PCR. The genes like lamB, ompX, and yaeT showed significant downregulation (p < 0.05) compared to the control without antibiotic exposure, whereas ybfM and ompA showed a moderate downregulation. The expression of omp genes such as lamB, ompA, ompX, ybfM, and yaeT were found to be low in the presence of ceftriaxone, followed by time and dose-dependent. The study provides insights into the possible involvement of OMPs in drug resistance of S. Typhi, which could help develop a therapeutic strategy to combat MDR isolates of S. Typhi.


Asunto(s)
Antibacterianos , Proteínas de la Membrana Bacteriana Externa , Ceftriaxona , Salmonella typhi , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Ceftriaxona/farmacología , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Salmonella typhi/efectos de los fármacos
18.
Rev Med Virol ; 32(2): e2274, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34216498

RESUMEN

The coronavirus disease 2019 (COVID-19) is a global pandemic caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, the virus has been detected in 219 countries of the world. Therefore, managing the disease becomes the priority, in which detecting the presence of the virus is a crucial step. Presently, real-time RT polymerase chain reaction (RT-qPCR) is considered a gold standard nucleic acid amplification test (NAAT). The test protocol of RT-qPCR is complicated, places high demands on equipment, testing reagents, research personnel skills and is expensive. Therefore, simpler point-of-care (POC) tests are needed to accelerate clinical decision-making and take some of the workload from centralized test laboratories. Various isothermal amplification-based assays have been developed for the sensitive detection of different microorganisms, and recently some of them have been applied for detection of SARS-CoV-2. These do not require any programable thermocycler, can produce the results in a single temperature, and therefore, are considered simple. Unlike RT-qPCR, these methods are highly sensitive, specific, less time-consuming, simple and affordable, and can be used as POC diagnostic kit for COVID-19. In this review, we have discussed the potential of isothermal amplification-based assays as an alternative to RT-qPCR for the detection of SARS-CoV-2.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , Pruebas en el Punto de Atención , ARN Viral , SARS-CoV-2/genética
19.
J Phys Chem A ; 125(48): 10321-10329, 2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34807597

RESUMEN

The photodissociation of methyl hydroperoxide (CH3OOH) at 193 nm has been studied using a direct dynamics trajectory surface-hopping (TSH) method. The potential energies, energy gradients, and nonadiabatic couplings are calculated on the fly at the MRCIS(6,7)/aug-cc-pVDZ level of theory. The hopping of a trajectory from one electronic state to another is decided on the basis of Tully's fewest switches algorithm. An analysis of the trajectories reveals that the cleavage of the weakest O-O bond leads to major products CH3O(2E) + OH(2Π), contributing about 72.7% of the overall product formation. This OH elimination was completed in the ground degenerate product state where both the ground singlet (S0) and first excited singlet (S1) states become degenerate. The O-H bond dissociation of CH3OOH is a minor channel contributing about 27.3% to product formation, resulting in products CH3OO + H. An inspection of the trajectories indicates that unlike the major channel OH elimination, the H-atom elimination channel makes a significant contribution (∼3% of the overall product formation) through the nonadiabatic pathway via conical intersection S1/S0 leading to ground-state products CH3OO(X 2A″) + H(2S) in addition to adiabatic dissociation in the first excited singlet state, S1, correlating to products CH3OO(1 2A') + H(2S). The computed translational energy of the majority of the OH products is found to be high, distributed in the range of 70 to 100 kcal/mol, indicating that the dissociation takes place on a strong repulsive potential energy surface. This finding is consistent with the nature of the experimentally derived translational energy distribution of OH with an average translational energy of 67 kcal/mol after the excitation of CH3OOH at 193 nm.

20.
BMC Res Notes ; 14(1): 313, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399833

RESUMEN

OBJECTIVES: Aeromonads cause severe diseases in farmed aquatic organisms. Herein, we examined 28 isolates causing disease in farmed aquatic organisms from India (n = 24) and Taiwan (n = 4) to gain insight of their genotypic and phenotypic properties. RESULTS: API 20NE biochemical phenotyping showed ≥ 90% similarity classifying all isolates as Aeromonas hydrophila. 16S rRNA genotyping showed ≥ 98% homology among all isolates with A. sobria (NR119044.1ATCC), A. veronii (MK990549.1), A. caviae (NR029252.1) and A. hydrophila (MG984625.1ATCC) and other reference strains. In contrast, gyrB showed a higher intraspecies diversity (≥ 96%) than 16S rRNA delineating the 28 isolates into three groups. Group-I consisted of seven Indian isolates clustered with A. sobria (MK484163.1ATCC), group-II comprised of five Indian and two Taiwanese isolates clustered with A. veronii AF417626.1ATCC while group-III had 11 Indian and three Taiwanese isolates grouped with A. hydrophila (AY987520.1 and DQ519366.1) reference strains. None of our isolates clustered with A. caviae (AJ868400.1ATCC) reference strain. These findings suggest that A. sobria, A. veronii and A. hydrophila could be the etiological agents of diseases observed in farmed fish and soft-shelled turtles (Pelodiscus sinensis) examined in this study. Overall, our findings accentuate the importance of combining phenotyping with genotyping for correct taxonomic classification of Aeromonas spp. in Aquaculture.


Asunto(s)
Aeromonas , Aeromonas/genética , Aeromonas hydrophila/genética , Animales , India , ARN Ribosómico 16S/genética , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...