Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Commun Biol ; 7(1): 276, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448753

RESUMEN

Immune checkpoint blockade has yet to produce robust anti-cancer responses for prostate cancer. Sialyltransferases have been shown across several solid tumours, including breast, melanoma, colorectal and prostate to promote immune suppression by synthesising sialoglycans, which act as ligands for Siglec receptors. We report that ST3 beta-galactoside alpha-2,3-sialyltransferase 1 (ST3Gal1) levels negatively correlate with androgen signalling in prostate tumours. We demonstrate that ST3Gal1 plays an important role in modulating tumour immune evasion through the synthesises of sialoglycans with the capacity to engage the Siglec-7 and Siglec-9 immunoreceptors preventing immune clearance of cancer cells. Here, we provide evidence of the expression of Siglec-7/9 ligands and their respective immunoreceptors in prostate tumours. These interactions can be modulated by enzalutamide and may maintain immune suppression in enzalutamide treated tumours. We conclude that the activity of ST3Gal1 is critical to prostate cancer anti-tumour immunity and provide rationale for the use of glyco-immune checkpoint targeting therapies in advanced prostate cancer.


Asunto(s)
Feniltiohidantoína , Neoplasias de la Próstata , beta-Galactosida alfa-2,3-Sialiltransferasa , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Benzamidas/farmacología , Nitrilos , Ligandos
2.
J Pathol ; 261(1): 71-84, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37550801

RESUMEN

Aberrant glycosylation is a universal feature of cancer cells, and cancer-associated glycans have been detected in virtually every cancer type. A common change in tumour cell glycosylation is an increase in α2,6 sialylation of N-glycans, a modification driven by the sialyltransferase ST6GAL1. ST6GAL1 is overexpressed in numerous cancer types, and sialylated glycans are fundamental for tumour growth, metastasis, immune evasion, and drug resistance, but the role of ST6GAL1 in prostate cancer is poorly understood. Here, we analyse matched cancer and normal tissue samples from 200 patients and verify that ST6GAL1 is upregulated in prostate cancer tissue. Using MALDI imaging mass spectrometry (MALDI-IMS), we identify larger branched α2,6 sialylated N-glycans that show specificity to prostate tumour tissue. We also monitored ST6GAL1 in plasma samples from >400 patients and reveal ST6GAL1 levels are significantly increased in the blood of men with prostate cancer. Using both in vitro and in vivo studies, we demonstrate that ST6GAL1 promotes prostate tumour growth and invasion. Our findings show ST6GAL1 introduces α2,6 sialylated N-glycans on prostate cancer cells and raise the possibility that prostate cancer cells can secrete active ST6GAL1 enzyme capable of remodelling glycans on the surface of other cells. Furthermore, we find α2,6 sialylated N-glycans expressed by prostate cancer cells can be targeted using the sialyltransferase inhibitor P-3FAX -Neu5Ac. Our study identifies an important role for ST6GAL1 and α2,6 sialylated N-glycans in prostate cancer progression and highlights the opportunity to inhibit abnormal sialylation for the development of new prostate cancer therapeutics. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Neoplasias de la Próstata , Sialiltransferasas , Masculino , Humanos , Glicosilación , Polisacáridos/química , Polisacáridos/metabolismo , Reino Unido , beta-D-Galactósido alfa 2-6-Sialiltransferasa , Antígenos CD/metabolismo
3.
Oncogene ; 42(12): 926-937, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36725887

RESUMEN

Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Regulación hacia Arriba , Glicosilación , Neoplasias de la Próstata/metabolismo , Transducción de Señal , Activación Transcripcional
4.
Mol Cancer ; 21(1): 183, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36131292

RESUMEN

BACKGROUND: Up to 80% of cases of prostate cancer present with multifocal independent tumour lesions leading to the concept of a field effect present in the normal prostate predisposing to cancer development. In the present study we applied Whole Genome DNA Sequencing (WGS) to a group of morphologically normal tissue (n = 51), including benign prostatic hyperplasia (BPH) and non-BPH samples, from men with and men without prostate cancer. We assess whether the observed genetic changes in morphologically normal tissue are linked to the development of cancer in the prostate. RESULTS: Single nucleotide variants (P = 7.0 × 10-03, Wilcoxon rank sum test) and small insertions and deletions (indels, P = 8.7 × 10-06) were significantly higher in morphologically normal samples, including BPH, from men with prostate cancer compared to those without. The presence of subclonal expansions under selective pressure, supported by a high level of mutations, were significantly associated with samples from men with prostate cancer (P = 0.035, Fisher exact test). The clonal cell fraction of normal clones was always higher than the proportion of the prostate estimated as epithelial (P = 5.94 × 10-05, paired Wilcoxon signed rank test) which, along with analysis of primary fibroblasts prepared from BPH specimens, suggests a stromal origin. Constructed phylogenies revealed lineages associated with benign tissue that were completely distinct from adjacent tumour clones, but a common lineage between BPH and non-BPH morphologically normal tissues was often observed. Compared to tumours, normal samples have significantly less single nucleotide variants (P = 3.72 × 10-09, paired Wilcoxon signed rank test), have very few rearrangements and a complete lack of copy number alterations. CONCLUSIONS: Cells within regions of morphologically normal tissue (both BPH and non-BPH) can expand under selective pressure by mechanisms that are distinct from those occurring in adjacent cancer, but that are allied to the presence of cancer. Expansions, which are probably stromal in origin, are characterised by lack of recurrent driver mutations, by almost complete absence of structural variants/copy number alterations, and mutational processes similar to malignant tissue. Our findings have implications for treatment (focal therapy) and early detection approaches.


Asunto(s)
Hiperplasia Prostática , Neoplasias de la Próstata , Células Clonales/patología , Humanos , Masculino , Nucleótidos , Próstata/patología , Hiperplasia Prostática/genética , Hiperplasia Prostática/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología
5.
FEBS Open Bio ; 12(7): 1365-1387, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35472129

RESUMEN

This study aimed to elucidate the role of ELF3, an ETS family member in normal prostate growth and prostate cancer. Silencing ELF3 in both benign prostate (BPH-1) and prostate cancer (PC3) cell lines resulted in decreased colony-forming ability, inhibition of cell migration and reduced cell viability due to cell cycle arrest, establishing ELF3 as a cell cycle regulator. Increased ELF3 expression in more advanced prostate tumours was shown by immunostaining of tissue microarrays and from analysis of gene expression and genetic alteration studies. This study indicates that ELF3 functions not only as a part of normal prostate epithelial growth but also as a potential oncogene in advanced prostate cancers.


Asunto(s)
Proteínas de Unión al ADN , Próstata , Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-ets , Factores de Transcripción , Ciclo Celular/genética , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Humanos , Masculino , Próstata/metabolismo , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factores de Transcripción/genética
6.
J Med Chem ; 65(5): 3833-3848, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35212533

RESUMEN

Aldehyde dehydrogenases (ALDHs) are overexpressed in various tumor types including prostate cancer and considered a potential target for therapeutic intervention. 4-(Diethylamino)benzaldehyde (DEAB) has been extensively reported as a pan-inhibitor of ALDH isoforms, and here, we report on the synthesis, ALDH isoform selectivity, and cellular potencies in prostate cancer cells of 40 DEAB analogues; three analogues (14, 15, and 16) showed potent inhibitory activity against ALDH1A3, and two analogues (18 and 19) showed potent inhibitory activity against ALDH3A1. Significantly, 16 analogues displayed increased cytotoxicity (IC50 = 10-200 µM) compared with DEAB (>200 µM) against three different prostate cancer cell lines. Analogues 14 and 18 were more potent than DEAB against patient-derived primary prostate tumor epithelial cells, as single agents or in combination treatment with docetaxel. In conclusion, our study supports the use of DEAB as an ALDH inhibitor but also reveals closely related analogues with increased selectivity and potency.


Asunto(s)
Aldehído Deshidrogenasa , Neoplasias de la Próstata , Benzaldehídos , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico
7.
Syst Biol Reprod Med ; 67(5): 354-365, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34180329

RESUMEN

The detection rates for prostate cancer (pCa) by invasive biopsy are high, fully justifying its use in confirmatory testing. False-positive results of prior, relatively insensitive screening tests, however, can lead to expensive and often unnecessary surgery. Several reports have suggested the potential use of the ejaculate to screen for prostate conditions. Hitherto, the potential impact of sterilization on the diagnostic potential of seminal plasma screening has not been examined. Herein, we report cellular and molecular comparisons of semen samples obtained from normal (N = 5), vasectomized (N = 5) and prostate pathology patients (N = 4; confirmed by a biopsy) that were centrifuged over 60% PureSperm cushions. Non-penetrating cells were washed prior to immunocytochemistry with prostatic epithelial cell markers including PSMA, NKX3.1 and CD24. KRT18 was used to highlight epithelial cells in these samples. RNA sequencing was then used to identify differentially expressed small RNAs associated with vasectomy and prostate pathology. Specific gene transcripts were confirmed by RT-qPCR. PMSA+/KRT18+, CD24+/KRT18+ and NKX3.1/+KRT18+ cells were observed, albeit infrequently in most processed semen samples by indirect immunocytochemistry. Targeted RT-qPCR supported their enrichment, along with their putative designation as prostatic luminal cells. Small RNAs in seminal plasma were highly heterogeneous, with tRNAs and miRNAs being the dominant forms. Hsa-miR-143 and hsa-miR-199 were among the most prominent of the differentially expressed miRNAs upregulated in samples with prostate pathology but not vasectomy. The targets of these small RNAs illustrate biological processes involved among others in transcription regulation and collagen metabolism. Our outcomes strongly support an appraisal of selected biologically meaningful small RNAs of ejaculate semen for prostate health screening. A long-term goal would be a simple, routine, noninvasive test for monitoring prostate health, potentially among younger men.


Asunto(s)
Neoplasias de la Próstata , Vasectomía , Biopsia , Humanos , Masculino , Próstata , Neoplasias de la Próstata/diagnóstico , Semen
8.
Cancers (Basel) ; 13(2)2021 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33477370

RESUMEN

Increasingly sophisticated therapies for chemical castration dominate first-line treatments for locally advanced prostate cancer. However, androgen deprivation therapy (ADT) offers little prospect of a cure, as resistant tumors emerge rather rapidly, normally within 30 months. Cells have multiple mechanisms of resistance to even the most sophisticated drug regimes, and both tumor cell heterogeneity in prostate cancer and the multiple salvage pathways result in castration-resistant disease related genetically to the original hormone-naive cancer. The timing and mechanisms of cell death after ADT for prostate cancer are not well understood, and off-target effects after long-term ADT due to functional extra-prostatic expression of the androgen receptor protein are now increasingly being recorded. Our knowledge of how these widely used treatments fail at a biological level in patients is deficient. In this review, I will discuss whether there are pre-existing drug-resistant cells in a tumor mass, or whether resistance is induced/selected by the ADT. Equally, what is the cell of origin of this resistance, and does it differ from the treatment-naïve tumor cells by differentiation or dedifferentiation? Conflicting evidence also emerges from studies in the range of biological systems and species employed to answer this key question. It is only by improving our understanding of this aspect of treatment and not simply devising another new means of androgen inhibition that we can improve patient outcomes.

9.
BJU Int ; 127(4): 389-399, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32893964

RESUMEN

OBJECTIVES: To present historical and contemporary hypotheses on the pathogenesis of benign prostatic hyperplasia (BPH), and the potential implications for current medical therapies. METHODS: The literature on BPH was reviewed. BPH is a prevalent disease with significant health and economic impacts on patients and health organisations across the world, whilst the cause/initiation of the disease process has still not been fully determined. RESULTS: In BPH, pathways involving androgens, oestrogens, insulin, inflammation, proliferative reawakening, stem cells and telomerase have been hypothesised in the pathogenesis of the disease. A number of pathways first described >40 years ago have been first rebuked and then have come back into favour. A system of an inflammatory process within the prostate, which leads to growth factor production, stem cell activation, and cellular proliferation encompassing a number of pathways, is currently in vogue. This review also highlights the physiology of the prostate cell subpopulations and how this may account for the delay/failure in treatment response for certain medical therapies. CONCLUSION: BPH is an important disease, and as the pathogenesis is not fully understood it impacts the effectiveness of medical therapies. This impacts patients, with further research potentially highlighting novel therapeutic avenues.


Asunto(s)
Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/etiología , Hiperplasia Prostática/fisiopatología , Hiperplasia Prostática/terapia
10.
Biomedicines ; 8(12)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291762

RESUMEN

Prostate cancer represents the most common malignancy diagnosed in men, and is the second-leading cause of cancer death in this population. In spite of dedicated efforts, the current therapies are rarely curative, requiring the development of novel approaches based on innovative molecular targets. In this work, we validated aldehyde dehydrogenase 1A1 and 1A3 isoform expressions in different prostatic tissue-derived cell lines (normal, benign and malignant) and patient-derived primary prostate tumor epithelial cells, demonstrating their potential for therapeutic intervention using a small library of aldehyde dehydrogenase inhibitors. Compound 3b, 6-(4-fluorophenyl)-2-phenylimidazo [1,2-a]pyridine exhibited not only antiproliferative activity in the nanomolar range against the P4E6 cell line, derived from localized prostate cancer, and PC3 cell lines, derived from prostate cancer bone metastasis, but also inhibitory efficacy against PC3 colony-forming efficiency. Considering its concomitant reduced activity against normal prostate cells, 3b has the potential as a lead compound to treat prostate cancer by means of a still untapped molecular target.

11.
Sci Rep ; 10(1): 13958, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811873

RESUMEN

Cancer stem cells (CSCs) are a small subpopulation of quiescent cells with the potential to differentiate into tumor cells. CSCs are involved in tumor initiation and progression and contribute to treatment failure through their intrinsic resistance to chemo- or radiotherapy, thus representing a substantial concern for cancer treatment. Prostate CSCs' activity has been shown to be regulated by the transcription factor Signal Transducer and Activator of Transcription 3 (STAT3). Here we investigated the effect of galiellalactone (GL), a direct STAT3 inhibitor, on CSCs derived from prostate cancer patients, on docetaxel-resistant spheres with stem cell characteristics, on CSCs obtained from the DU145 cell line in vitro and on DU145 tumors in vivo. We found that GL significantly reduced the viability of docetaxel-resistant and patient-derived spheres. Moreover, CSCs isolated from DU145 cells were sensitive to low concentrations of GL, and the treatment with GL suppressed their viability and their ability to form colonies and spheres. STAT3 inhibition down regulated transcriptional targets of STAT3 in these cells, indicating STAT3 activity in CSCs. Our results indicate that GL can target the prostate stem cell niche in patient-derived cells, in docetaxel-resistant spheres and in an in vitro model. We conclude that GL represents a promising therapeutic approach for prostate cancer patients, as it reduces the viability of prostate cancer-therapy-resistant cells in both CSCs and non-CSC populations.


Asunto(s)
Lactonas/farmacología , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Humanos , Lactonas/metabolismo , Masculino , Ratones , Próstata/patología , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
FEBS Lett ; 594(2): 209-226, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31468514

RESUMEN

Low Temperature Plasma (LTP) generates reactive oxygen and nitrogen species, causing cell death, similarly to radiation. Radiation resistance results in tumour recurrence, however mechanisms of LTP resistance are unknown. LTP was applied to patient-derived prostate epithelial cells and gene expression assessed. A typical global oxidative response (AP-1 and Nrf2 signalling) was induced, whereas Notch signalling was activated exclusively in progenitor cells. Notch inhibition induced expression of prostatic acid phosphatase (PAP), a marker of prostate epithelial cell differentiation, whilst reducing colony forming ability and preventing tumour formation. Therefore, if LTP is to be progressed as a novel treatment for prostate cancer, combination treatments should be considered in the context of cellular heterogeneity and existence of cell type-specific resistance mechanisms.


Asunto(s)
Gases em Plasma/uso terapéutico , Neoplasias de la Próstata/radioterapia , Tolerancia a Radiación/efectos de la radiación , Receptores Notch/genética , Fosfatasa Ácida/genética , Muerte Celular/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de la radiación , Células Epiteliales/efectos de la radiación , Regulación Neoplásica de la Expresión Génica/efectos de la radiación , Humanos , Masculino , Factor 2 Relacionado con NF-E2/genética , Gases em Plasma/efectos adversos , Próstata/patología , Próstata/efectos de la radiación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Tolerancia a Radiación/genética , Especies de Nitrógeno Reactivo/efectos de la radiación , Especies Reactivas de Oxígeno/efectos de la radiación , Transducción de Señal/efectos de la radiación , Células Madre/efectos de la radiación , Factor de Transcripción AP-1/genética
14.
Br J Cancer ; 121(12): 1016-1026, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31673104

RESUMEN

BACKGROUND: Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS: PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS: PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS: PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.


Asunto(s)
Carcinogénesis/genética , Neoplasias/genética , Fosfolipasa D/genética , Neoplasias de la Próstata Resistentes a la Castración/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Clasificación del Tumor , Neoplasias/patología , Neoplasias de la Próstata Resistentes a la Castración/patología , Transducción de Señal/genética
15.
Adv Exp Med Biol ; 1164: 109-118, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31576544

RESUMEN

Choosing an appropriate cell model(s) is the first decision to be made before starting a new project or programme of study. Here, we address the rationale that can be behind this decision and we summarize the current cell models that are used to study prostate cancer. Researchers face the challenge of choosing a model that recapitulates the complexity and heterogeneity of prostate cancer. The use of primary prostate epithelial cells cultured from patient tissue is discussed, and the necessity for close clinical-academic collaboration in order to do this is highlighted. Finally, a novel quantitative phase imaging technique is described, along with the potential for cell characterization to not only include gene expression and protein markers but also morphological features, cell behaviour and kinetic activity.


Asunto(s)
Línea Celular Tumoral , Células Epiteliales , Neoplasias de la Próstata , Línea Celular , Células Epiteliales/citología , Humanos , Masculino
16.
Adv Exp Med Biol ; 1164: 207-224, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31576551

RESUMEN

Prostate cancers have a justified reputation as one of the most heterogeneous human tumours. Indeed, there are some who consider that advanced and castration-resistant prostate cancers are incurable, as a direct result of this heterogeneity. However, tumour heterogeneity can be defined in different ways. To a clinician, prostate cancer is a number of different diseases, the treatments for which remain equally heterogeneous and uncertain. To the pathologist, the histopathological appearances of the tumours are notoriously heterogeneous. Indeed, the genius of Donald Gleason in the 1960s was to devise a classification system designed to take into account the heterogeneity of the tumours both individually and in the whole prostate context. To the cell biologist, a prostate tumour consists of multiple epithelial cell types, inter-mingled with various fibroblasts, neuroendocrine cells, endothelial cells, macrophages and lymphocytes, all of which interact to influence treatment responses in a patient-specific manner. Finally, genetic analyses of prostate cancers have been compromised by the variable gene rearrangements and paucity of activating mutations observed, even in large numbers of patient tumours with consistent clinical diagnoses and/or outcomes. Research into familial susceptibility has even generated the least tractable outcome of such studies: the genetic loci are of low penetrance and are of course heterogeneous. By fractionating the tumour (and patient-matched non-malignant tissues) heterogeneity can be resolved, revealing homogeneous markers of patient outcomes.


Asunto(s)
Células Endoteliales , Neoplasias de la Próstata , Células Endoteliales/citología , Heterogeneidad Genética , Humanos , Masculino , Mutación , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/terapia
17.
Int J Mol Sci ; 20(10)2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31108832

RESUMEN

A successful prostate cancer must be capable of changing its phenotype in response to a variety of microenvironmental influences, such as adaptation to treatment or successful proliferation at a particular metastatic site. New cell phenotypes emerge by selection from the large, genotypically heterogeneous pool of candidate cells present within any tumor mass, including a distinct stem cell-like population. In such a multicellular model of human prostate cancer, flexible responses are primarily governed not only by de novo mutations but appear to be dominated by a combination of epigenetic controls, whose application results in treatment resistance and tumor relapse. Detailed studies of these individual cell populations have resulted in an epigenetic model for epithelial cell differentiation, which is also instructive in explaining the reported high and inevitable relapse rates of human prostate cancers to a multitude of treatment types.


Asunto(s)
Epigénesis Genética , Redes Reguladoras de Genes , Próstata/química , Neoplasias de la Próstata/genética , Diferenciación Celular , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Mutación , Células Madre Neoplásicas/química
18.
Sci Rep ; 9(1): 5120, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30914656

RESUMEN

Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Proteínas del Tejido Nervioso/biosíntesis , Próstata/metabolismo , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/biosíntesis , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Células PC-3 , Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Supresoras de Tumor/genética
19.
Nucleic Acids Res ; 47(8): 3937-3956, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30820548

RESUMEN

RNA polymerase (pol) III occurs in two forms, containing either the POLR3G subunit or the related paralogue POLR3GL. Whereas POLR3GL is ubiquitous, POLR3G is enriched in undifferentiated cells. Depletion of POLR3G selectively triggers proliferative arrest and differentiation of prostate cancer cells, responses not elicited when POLR3GL is depleted. A small molecule pol III inhibitor can cause POLR3G depletion, induce similar differentiation and suppress proliferation and viability of cancer cells. This response involves control of the fate-determining factor NANOG by small RNAs derived from Alu short interspersed nuclear elements. Tumour initiating activity in vivo can be reduced by transient exposure to the pol III inhibitor. Untransformed prostate cells appear less sensitive than cancer cells to pol III depletion or inhibition, raising the possibility of a therapeutic window.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , ARN Polimerasa III/genética , Bibliotecas de Moléculas Pequeñas/farmacología , Anciano , Elementos Alu/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Proteína Homeótica Nanog/genética , Proteína Homeótica Nanog/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Prostatectomía , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Polimerasa III/antagonistas & inhibidores , ARN Polimerasa III/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Br J Cancer ; 119(9): 1133-1143, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30318509

RESUMEN

BACKGROUND: Human prostate cancers display numerous DNA methylation changes compared to normal tissue samples. However, definitive identification of features related to the cells' malignant status has been compromised by the predominance of cells with luminal features in prostate cancers. METHODS: We generated genome-wide DNA methylation profiles of cell subpopulations with basal or luminal features isolated from matched prostate cancer and normal tissue samples. RESULTS: Many frequent DNA methylation changes previously attributed to prostate cancers are here identified as differences between luminal and basal cells in both normal and cancer samples. We also identified changes unique to each of the two cancer subpopulations. Those specific to cancer luminal cells were associated with regulation of metabolic processes, cell proliferation and epithelial development. Within the prostate cancer TCGA dataset, these changes were able to distinguish not only cancers from normal samples, but also organ-confined cancers from those with extraprostatic extensions. Using changes present in both basal and luminal cancer cells, we derived a new 17-CpG prostate cancer signature with high predictive power in the TCGA dataset. CONCLUSIONS: This study demonstrates the importance of comparing phenotypically matched prostate cell populations from normal and cancer tissues to unmask biologically and clinically relevant DNA methylation changes.


Asunto(s)
Metilación de ADN , Fenotipo , Neoplasias de la Próstata/genética , Islas de CpG , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA