Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Med Chem ; 276: 116658, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39088999

RESUMEN

The enterovirus is a genus of single-stranded, highly diverse positive-sense RNA viruses, including Human Enterovirus A-D and Human Rhinovirus A-C species. They are responsible for numerous diseases and some infections can progress to life-threatening complications, particularly in children or immunocompromised patients. To date, there is no treatment against enteroviruses on the market, except for polioviruses (vaccine) and EV-A71 (vaccine in China). Following a decrease in enterovirus infections during and shortly after the (SARS-Cov2) lockdown, enterovirus outbreaks were once again detected, notably in young children. This reemergence highlights on the need to develop broad-spectrum treatment against enteroviruses. Over the last year, our research team has identified a new class of small-molecule inhibitors showing anti-EV activity. Targeting the well-known hydrophobic pocket in the viral capsid, these compounds show micromolar activity against EV-A71 and a high selectivity index (SI) (5h: EC50, MRC-5 = 0.57 µM, CC50, MRC-5 >20 µM, SI > 35; EC50, RD = 4.38 µM, CC50, RD > 40 µM, SI > 9; 6c: EC50, MRC-5 = 0.29 µM, CC50, MRC-5 >20 µM, SI > 69; EC50, RD = 1.66 µM, CC50, RD > 40 µM, SI > 24; Reference: Vapendavir EC50, MRC-5 = 0.36 µM, CC50, MRC-5 > 20 µM, EC50, RD = 0.53 µM, CC50, RD > 40 µM, SI > 63). The binding mode of these compounds in complex with enterovirus capsids was analyzed and showed a series of conserved interactions. Consequently, 6c and its derivatives are promising candidates for the treatment of enterovirus infections.


Asunto(s)
Antivirales , Cápside , Enterovirus Humano A , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Humanos , Enterovirus Humano A/efectos de los fármacos , Cápside/efectos de los fármacos , Cápside/metabolismo , Relación Estructura-Actividad , Proteínas de la Cápside/antagonistas & inhibidores , Proteínas de la Cápside/metabolismo , Proteínas de la Cápside/química , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga
3.
Bioorg Chem ; 150: 107627, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996547

RESUMEN

1,4-naphthoquinones hydroxyderivatives belong to an important class of natural products and have been known as a favored scaffold in medicinal chemistry due to their multiple biological properties. Juglone is one of the most important 1,4-naphthoquinone extracted from juglandaceae family showing a good antibacterial activity. In this study, we report the synthesis of aminojuglone derivatives through Michael addition reaction using Cerium (III) chloride heptahydrate (CeCl3·7H2O) as catalyst. The synthesized aminojuglone derivatives were evaluated for their antibacterial properties against sensitive, clinical resistant Gram-positive and Gram-negative bacterial strains. Compound 3c showed a good antibacterial activity similar to cloxacillin (2 µg/mL) against the clinically resistant S.aureus. The antibiotic adjuvant activity of compounds was evaluated in combination with three clinically use antibiotics. The combination of compounds 3a, 3b, 3e, 3 h-3 l, 3n and 3o with cloxacillin showed remarkable adjuvant activity against clinically resistant S. aureus (66-fold potentiation of cloxacillin activity). 3e is the only compound consistent with the concept of antibiotic adjuvant, presenting insufficient antibacterial activity (MIC > 128 µg/mL) and potentiate the activity of cloxacillin (66-fold) with synergistic effect. A structural characterization of 3e was carried out for the first time using X-ray diffraction technic. Moreover, compound 3e did not show a cytotoxic activity on sheep red blood cells.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Naftoquinonas , Naftoquinonas/farmacología , Naftoquinonas/química , Naftoquinonas/síntesis química , Naftoquinonas/aislamiento & purificación , Antibacterianos/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Animales
4.
Bioorg Chem ; 150: 107606, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38968903

RESUMEN

The number of new antibacterial agents currently being discovered is insufficient to combat bacterial resistance. It is extremely challenging to find new antibiotics and to introduce them to the pharmaceutical market. Therefore, special attention must be given to find new strategies to combat bacterial resistance and prevent bacteria from developing resistance. Two-component system is a transduction system and the most prevalent mechanism employed by bacteria to respond to environmental changes. This signaling system consists of a membrane sensor histidine kinase that perceives environmental stimuli and a response regulator which acts as a transcription factor. The approach consisting of developing response regulators inhibitors with antibacterial activity or antibiotic adjuvant activity is a novel approach that has never been previously reviewed. In this review we report for the first time, the importance of targeting response regulators and summarizing all existing studies carried out from 2008 until now on response regulators inhibitors as antibacterial agents or / and antibiotic adjuvants. Moreover, we describe the antibacterial activity and/or antibiotic adjuvants activity against the studied bacterial strains and the mechanism of different response regulator inhibitors when it's possible.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Humanos , Adyuvantes Farmacéuticos/farmacología , Adyuvantes Farmacéuticos/química
5.
Bioorg Med Chem ; 100: 117604, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290306

RESUMEN

Colistin is considered as the last-resort antibiotics to treat multi-drug resistant Gram-negative bacterial infections in humans. However, the clinical use of colistin was limited because of the apparition of chromosomal mutations and mobile colistin resistance genes in bacterial isolates. One promising strategy is to combine existing antibiotics with promising non-antibiotics to overcome the widespread emergence of antibiotic-resistant pathogens. Moreover, colistin resistance would be regulated by two component systems PhoP/PhoQ which leads to permanent synthesis of cationic groups compensating for Mg2+ deficiency. In this study, the synthesis of a small library of tryptamine urea derivatives was carried out. In addition, antibiotic susceptibility, antibiotic adjuvant screening and checkerboard assays were used to investigate the antibacterial activity of these synthesized compounds and the potential synergistic activity of their combination with colistin. Conformational analysis of the docked binding modes of the active compound in the predicted binding pocket of bacterial response regulator PhoP were carried out, to see if the active compound inhibits PhoP which is involved in colistin resistance. Finally, hemolytic activity studies have been conducted on the most active compound.


Asunto(s)
Colistina , Infecciones por Klebsiella , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/metabolismo , Colistina/farmacología , Farmacorresistencia Bacteriana , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Triptaminas/química , Triptaminas/farmacología , Urea/química , Urea/farmacología
6.
Biomed Pharmacother ; 162: 114690, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37075666

RESUMEN

Bacterial resistance development represents a serious threat to human health across the globe and has become a very serious clinical problem for many classes of antibiotics. Hence, there is a constant and urgent need for the discovery and development of new effective antibacterial agents to stem the emergence of resistant bacteria. 1,4-naphthoquinones are an important class of natural products and have been known for decades as a privileged scaffold in medicinal chemistry regarding their many biological properties. The significant biological properties of specific 1,4-naphthoquinones hydroxyderivatives have drawn the attention of researchers in order to find new derivatives with an optimized activity, mainly as antibacterial agents. Based on juglone, naphthazarin, plumbagin and lawsone moieties, structural optimization was realized with the purpose of improving the antibacterial activity. Thereupon, relevant antibacterial activities have been observed on different panels of bacterial strains including resistant ones. In this review, we highlight the interest of developing new 1,4-naphthoquinones hydroxyderivatives and some metal complexes as promising antibacterial agents alternatives. Here, we thoroughly report for the first time both the antibacterial activity and the chemical synthesis of four different 1,4-naphthoquinones (juglone, naphthazarin, plumbagin and lawsone) from 2002 to 2022 with an emphasis on the structure-activity relationship, when applicable.


Asunto(s)
Complejos de Coordinación , Naftoquinonas , Humanos , Complejos de Coordinación/farmacología , Naftoquinonas/farmacología , Bacterias , Antibacterianos/farmacología
7.
Front Chem ; 9: 773981, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869221

RESUMEN

Infections caused by drug-resistant bacteria are a serious threat to human and global public health. Moreover, in recent years, very few antibiotics have been discovered and developed by pharmaceutical companies. Therefore, there is an urgent need to discover and develop new antibacterial agents to combat multidrug-resistant bacteria. In this study, two novel series of juglone/naphthazarin derivatives (43 compounds) were synthesized and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA, and clinical and reference Gram-negative bacteria E. coli and P. aeruginosa. These strains are of clinical importance because they belong to ESKAPE pathogens. Compounds 3al, 5ag, and 3bg showed promising activity against clinical and reference MSSA (MIC: 1-8 µg/ml) and good efficacy against clinical MRSA (MIC: 2-8 µg/ml) strains. 5am and 3bm demonstrated better activity on both MSSA (MIC: 0.5 µg/ml) and MRSA (MIC: 2 µg/ml) strains. Their MICs were similar to those of cloxacillin against clinical MRSA strains. The synergistic effects of active compounds 3al, 5ag, 5am, 3bg, and 3bm were evaluated with reference antibiotics, and it was found that the antibiotic combination with 3bm efficiently enhanced the antimicrobial activity. Compound 3bm was found to restore the sensitivity of clinical MRSA to cloxacillin and enhanced the antibacterial activity of vancomycin when they were added together. In the presence of 3bm, the MIC values of vancomycin and cloxacillin were lowered up to 1/16th of the original MIC with an FIC index of 0.313. Moreover, compounds 3al, 5ag, 5am, 3bg, and 3bm did not present hemolytic activity on sheep red blood cells. In silico prediction of ADME profile parameter results for 3bm is promising and encouraging for further development.

8.
Antioxidants (Basel) ; 9(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365570

RESUMEN

The aim of this work was to contribute to the knowledge on the chemical composition and bioactive properties of two species of the Ocimum genus, namely O. basilicum cultivar 'Cinammon' and O. × citriodorum. For this purpose, samples of these plants grown in Portugal were evaluated for their composition in phenolic and volatile compounds, and the infusion and hydroethanolic extracts were assessed for their in vitro antioxidant, antimicrobial, cytotoxic, and anti-inflammatory activities. In total, the two basil samples showed the presence of seven caffeic acid and derivatives (dimers, trimers, and tetramers) and five flavonoids, mainly glycoside derivatives of quercetin. Despite some qualitative and quantitative differences, in both samples rosmarinic acid was the major phenolic compound, and linalool the predominant volatile compound. In general, the tested extracts provided relevant bioactive properties since both basil species showed higher antioxidant activity in Thiobarbituric Acid Reactive Substances (TBARs) and Oxidative Hemolysis Inhibition (OxHLIA) assays when compared with the positive control Trolox. Despite O. × citriodorum extracts showing slightly better activity against some strains, both types of extracts evidenced similar antimicrobial activity, being more active against Gram-positive bacteria. The extracts also revealed interesting cytotoxicity, particularly the O. × citriodorum hydroethanolic extract which was also the only one exhibiting anti-inflammatory activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA