Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
mBio ; 13(6): e0292322, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36409124

RESUMEN

Serine incorporator 5 (Ser5), a transmembrane protein, has recently been identified as a host antiviral factor against human immunodeficiency virus (HIV)-1 and gammaretroviruses like murine leukemia viruses (MLVs). It is counteracted by HIV-1 Nef and MLV glycogag. We have investigated whether it has antiviral activity against influenza A virus (IAV), as well as retroviruses. Here, we demonstrated that Ser5 inhibited HIV-1-based pseudovirions bearing IAV hemagglutinin (HA); as expected, the Ser5 effect on this glycoprotein was antagonized by HIV-1 Nef protein. We found that Ser5 inhibited the virus-cell and cell-cell fusion of IAV, apparently by interacting with HA proteins. Most importantly, overexpressed and endogenous Ser5 inhibited infection by authentic IAV. Single-molecular fluorescent resonance energy transfer (smFRET) analysis further revealed that Ser5 both destabilized the pre-fusion conformation of IAV HA and inhibited the coiled-coil formation during membrane fusion. Ser5 is expressed in cultured small airway epithelial cells, as well as in immortal human cell lines. In summary, Ser5 is a host antiviral factor against IAV which acts by blocking HA-induced membrane fusion. IMPORTANCE SERINC5 (Ser5) is a cellular protein which has been found to interfere with the infectivity of HIV-1 and a number of other retroviruses. Virus particles produced in the presence of Ser5 are impaired in their ability to enter new host cells, but the mechanism of Ser5 action is not well understood. We now report that Ser5 also inhibits infectivity of Influenza A virus (IAV) and that it interferes with the conformational changes in IAV hemagglutinin protein involved in membrane fusion and virus entry. These findings indicate that the antiviral function of Ser5 extends to other viruses as well as retroviruses, and also provide some information on the molecular mechanism of its antiviral activity.


Asunto(s)
Virus de la Influenza A , Animales , Ratones , Humanos , Hemaglutininas , Proteínas de la Membrana/metabolismo , Virus de la Leucemia Murina , Línea Celular
2.
J Clin Invest ; 132(24)2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36264642

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with an increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increased susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. We identified 1 rapalog (ridaforolimus) that was less potent in this regard and demonstrated that rapalogs promote spike-mediated entry into cells, by triggering the degradation of the antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increased virus entry inhibited mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitated its nuclear translocation and triggered microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Inhibidores mTOR , Internalización del Virus , Sirolimus/farmacología , Inmunidad Innata , Proteínas de la Membrana , Proteínas de Unión al ARN
3.
Nat Rev Immunol ; 22(6): 339-352, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34646033

RESUMEN

Virus entry, consisting of attachment to and penetration into the host target cell, is the first step of the virus life cycle and is a critical 'do or die' event that governs virus emergence in host populations. Most antiviral vaccines induce neutralizing antibodies that prevent virus entry into cells. However, while the prevention of virus invasion by humoral immunity is well appreciated, considerably less is known about the immune defences present within cells (known as intrinsic immunity) that interfere with virus entry. The interferon-induced transmembrane (IFITM) proteins, known for inhibiting fusion between viral and cellular membranes, were once the only factors known to restrict virus entry. However, the progressive development of genetic and pharmacological screening platforms and the onset of the COVID-19 pandemic have galvanized interest in how viruses infiltrate cells and how cells defend against it. Several host factors with antiviral potential are now implicated in the regulation of virus entry, including cholesterol 25-hydroxylase (CH25H), lymphocyte antigen 6E (LY6E), nuclear receptor co-activator protein 7 (NCOA7), interferon-γ-inducible lysosomal thiol reductase (GILT), CD74 and ARFGAP with dual pleckstrin homology domain-containing protein 2 (ADAP2). This Review summarizes what is known and what remains to be understood about the intrinsic factors that form the first line of defence against virus infection.


Asunto(s)
COVID-19 , Internalización del Virus , Antivirales , Humanos , Interferones , Proteínas de la Membrana/metabolismo , Pandemias
4.
bioRxiv ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-33880473

RESUMEN

SARS-CoV-2 infection in immunocompromised individuals is associated with prolonged virus shedding and evolution of viral variants. Rapamycin and its analogs (rapalogs, including everolimus, temsirolimus, and ridaforolimus) are FDA-approved as mTOR inhibitors for the treatment of human diseases, including cancer and autoimmunity. Rapalog use is commonly associated with increased susceptibility to infection, which has been traditionally explained by impaired adaptive immunity. Here, we show that exposure to rapalogs increases susceptibility to SARS-CoV-2 infection in tissue culture and in immunologically naive rodents by antagonizing the cell-intrinsic immune response. By identifying one rapalog (ridaforolimus) that is less potent in this regard, we demonstrate that rapalogs promote Spike-mediated entry into cells by triggering the degradation of antiviral proteins IFITM2 and IFITM3 via an endolysosomal remodeling program called microautophagy. Rapalogs that increase virus entry inhibit the mTOR-mediated phosphorylation of the transcription factor TFEB, which facilitates its nuclear translocation and triggers microautophagy. In rodent models of infection, injection of rapamycin prior to and after virus exposure resulted in elevated SARS-CoV-2 replication and exacerbated viral disease, while ridaforolimus had milder effects. Overall, our findings indicate that preexisting use of certain rapalogs may elevate host susceptibility to SARS-CoV-2 infection and disease by activating lysosome-mediated suppression of intrinsic immunity.

5.
Elife ; 92020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33112230

RESUMEN

The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline-rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, Amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.


Asunto(s)
Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Proteínas de la Membrana/química , Proteínas de la Membrana/inmunología , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/inmunología , Secuencias de Aminoácidos , Línea Celular , Células HEK293 , Humanos , Virus de la Influenza A/genética , Gripe Humana/genética , Gripe Humana/virología , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/genética , Internalización del Virus
6.
mBio ; 11(1)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964738

RESUMEN

Interferon-induced transmembrane (IFITM) proteins are encoded by many vertebrate species and exhibit antiviral activities against a wide range of viruses. IFITM3, when present in virus-producing cells, reduces the fusion potential of HIV-1 virions, but the mechanism is poorly understood. To define the breadth and mechanistic basis for the antiviral activity of IFITM3, we took advantage of a murine leukemia virus (MLV)-based pseudotyping system. By carefully controlling amounts of IFITM3 and envelope protein (Env) in virus-producing cells, we found that IFITM3 potently inhibits MLV infectivity when Env levels are limiting. Loss of infectivity was associated with defective proteolytic processing of Env and lysosomal degradation of the Env precursor. Ecotropic and xenotropic variants of MLV Env, as well as HIV-1 Env and vesicular stomatitis virus glycoprotein (VSV-G), are sensitive to IFITM3, whereas Ebola glycoprotein is resistant, suggesting that IFITM3 selectively inactivates certain viral glycoproteins. Furthermore, endogenous IFITM3 in human and murine cells negatively regulates MLV Env abundance. However, we found that the negative impact of IFITM3 on virion infectivity is greater than its impact on decreasing Env incorporation, suggesting that IFITM3 may impair Env function, as well as reduce the amount of Env in virions. Finally, we demonstrate that loss of virion infectivity mediated by IFITM3 is reversed by the expression of glycoGag, a murine retrovirus accessory protein previously shown to antagonize the antiviral activity of SERINC proteins. Overall, we show that IFITM3 impairs virion infectivity by regulating Env quantity and function but that enhanced Env expression and glycoGag confer viral resistance to IFITM3.IMPORTANCE The viral envelope glycoprotein, known as "Env" in Retroviridae, is found on the virion surface and facilitates virus entry into cells by mediating cell attachment and fusion. Env is a major structural component of retroviruses and is targeted by all arms of the immune response, including adaptive and innate immunity. Less is known about how cell-intrinsic immunity prevents retrovirus replication at the level of individual cells. Here, we show that cellular IFITM3 and IFITM2 inhibit the fusion potential of retroviral virions by inhibiting Env protein via a two-pronged mechanism. IFITM proteins inhibit Env abundance in cells and also impair its function when levels are low. The posttranslational block of retroviral Env function by IFITM proteins is likely to impede both exogenous and endogenous retrovirus replication. In support of a relevant role for IFITM3 in retrovirus control, the retroviral accessory protein glycoGag counteracts IFITM3 function to promote virus infectivity.


Asunto(s)
Interacciones Huésped-Patógeno , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo , Infecciones por Retroviridae/metabolismo , Infecciones por Retroviridae/virología , Retroviridae/fisiología , Proteínas del Envoltorio Viral/metabolismo , Animales , VIH-1/fisiología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Virus de la Leucemia Murina/fisiología , Lisosomas/metabolismo , Ratones , Unión Proteica , Transporte de Proteínas , Proteolisis , Infecciones por Retroviridae/inmunología , Proteínas del Envoltorio Viral/inmunología
7.
Hum Gene Ther ; 30(8): 1023-1034, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30977420

RESUMEN

The initial stages following the in vitro cytokine stimulation of human cord blood CD34+ cells overlap with the period when lentiviral gene transfer is typically performed. Single-cell transcriptional profiling and time-lapse microscopy were used to investigate how the vector-cell crosstalk impacts on the fate decision process. The single-cell transcription profiles were analyzed using a new algorithm, and it is shown that lentiviral transduction during the early stages of stimulation modifies the dynamics of the fate choice process of the CD34+ cells. The cells transduced with a lentiviral vector are biased toward the common myeloid progenitor lineage. Valproic acid, a histone deacetylase inhibitor known to increase the grafting potential of the CD34+ cells, improves the transduction efficiency to almost 100%. The cells transduced in the presence of valproic acid can subsequently undergo normal fate commitment. The higher gene transfer efficiency did not alter the genomic integration profile of the vector. These observations open the way to substantially improving lentiviral gene transfer protocols.


Asunto(s)
Vectores Genéticos/genética , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Transducción Genética , Ácido Valproico/farmacología , Biomarcadores , Diferenciación Celular/efectos de los fármacos , Sangre Fetal/citología , Expresión Génica , Técnicas de Transferencia de Gen , Células Madre Hematopoyéticas/citología , Humanos , Fenotipo , Transgenes , Integración Viral
8.
Acta Biomater ; 64: 259-268, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29017974

RESUMEN

Gene transfer using lentiviral vectors has therapeutic applications spanning from monogenic and infectious diseases to cancer. Such gene therapy has to be improved by enhancing the levels of viral infection of target cells and/or reducing the amount of lentivirus for greater safety and reduced costs. Vectofusin-1, a recently developed cationic amphipathic peptide with a pronounced capacity to enhance such viral transduction, strongly promotes the entry of several retroviral pseudotypes into target cells when added to the culture medium. To clarify the molecular basis of its action the peptide was investigated on a molecular and a supramolecular level by a variety of biophysical approaches. We show that in culture medium vectofusin-1 rapidly forms complexes in the 10 nm range that further assemble into annular and extended nanofibrils. These associate with viral particles allowing them to be easily pelleted for optimal virus-cell interaction. Thioflavin T fluorescence, circular dichroism and infrared spectroscopies indicate that these fibrils have a unique α-helical structure whereas most other viral transduction enhancers form ß-amyloid fibrils. A vectofusin-1 derivative (LAH2-A4) is inefficient in biological assays and does not form nanofibrils, suggesting that supramolecular assembly is essential for transduction enhancement. Our observations define vectofusin-1 as a member of a new class of α-helical enhancers of lentiviral infection. Its fibril formation is reversible which bears considerable advantages in handling the peptide in conditions well-adapted to Good Manufacturing Practices and scalable gene therapy protocols.


Asunto(s)
Lentivirus , Nanofibras/química , Péptidos , Transducción Genética/métodos , Virión/química , Línea Celular , Humanos , Péptidos/química , Péptidos/farmacología
9.
J Biol Chem ; 292(45): 18672-18681, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28928217

RESUMEN

Autophagy-related proteins such as Beclin-1 are involved in an array of complex processes, including antiviral responses, and may also modulate the efficiency of gene therapy viral vectors. The Tat-Beclin-1 (TB1) peptide has been reported as an autophagy-inducing factor inhibiting the replication of pathogens such as HIV, type 1 (HIV-1). However, autophagy-related proteins are also essential for the early steps of HIV-1 infection. Therefore, we examined the effects of the Beclin-1 evolutionarily conserved domain in TB1 on viral transduction and autophagy in single-round HIV infection or with nonreplicative HIV-1-derived lentiviral vectors. TB1 enhanced transduction with various pseudotypes but without inducing the autophagy process. TB1 augmented the transduction of human CD34+ hematopoietic stem/progenitor cells while maintaining their capacity to engraft in vivo into humanized mice. TB1 was as effective as other transduction additives and functioned by enhancing the adhesion and fusion of viral particles with target cells but not their aggregation. We also found that the N-terminal L1 loop was critical for TB1 transduction-enhancing activity. Interestingly, the Tat-Beclin-2 (TB2) peptide, derived from the human Beclin-2 protein, was even more potent than TB1 in promoting viral transduction and infection. Taken together, our findings suggest that the TB1 and TB2 peptides enhance the viral entry step. Tat-Beclin peptides therefore represent a new family of viral transduction enhancers for potential use in gene therapy.


Asunto(s)
Autofagia , Beclina-1/metabolismo , VIH-1/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lentivirus/fisiología , Internalización del Virus , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Secuencia de Aminoácidos , Animales , Beclina-1/química , Beclina-1/genética , Línea Celular Transformada , Línea Celular Tumoral , Células Cultivadas , Secuencia Conservada , Terapia Genética/métodos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/virología , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Transgénicos , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Organismos Libres de Patógenos Específicos , Regulación hacia Arriba , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética
10.
J Biol Chem ; 291(5): 2161-9, 2016 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-26668323

RESUMEN

Gene delivery into hCD34+ hematopoietic stem/progenitor cells (HSPCs) using human immunodeficiency virus, type 1-derived lentiviral vectors (LVs) has several promising therapeutic applications. Numerous clinical trials are currently underway. However, the efficiency, safety, and cost of LV gene therapy could be ameliorated by enhancing target cell transduction levels and reducing the amount of LV used on the cells. Several transduction enhancers already exist, such as fibronectin fragments or cationic compounds. Recently, we discovered Vectofusin-1, a new transduction enhancer, also called LAH4-A4, a short histidine-rich amphipathic peptide derived from the LAH4 family of DNA transfection agents. Vectofusin-1 enhances the infectivity of lentiviral and γ-retroviral vectors pseudotyped with various envelope glycoproteins. In this study, we compared a family of Vectofusin-1 isomers and showed that Vectofusin-1 remains the lead peptide for HSPC transduction enhancement with LVs pseudotyped with vesicular stomatitis virus glycoproteins and also with modified gibbon ape leukemia virus glycoproteins. By comparing the capacity of numerous Vectofusin-1 variants to promote the modified gibbon ape leukemia virus glycoprotein-pseudotyped lentiviral vector infectivity of HSPCs, the lysine residues on the N-terminal extremity of Vectofusin-1, a hydrophilic angle of 140° formed by the histidine residues in the Schiffer-Edmundson helical wheel representation, hydrophobic residues consisting of leucine were all found to be essential and helped to define a minimal active sequence. The data also show that the critical determinants necessary for lentiviral transduction enhancement are partially different from those necessary for efficient antibiotic or DNA transfection activity of LAH4 derivatives. In conclusion, these results help to decipher the action mechanism of Vectofusin-1 in the context of hCD34+ cell-based gene therapy.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Madre Hematopoyéticas/citología , Lentivirus , Secuencia de Aminoácidos , Antígenos CD34/metabolismo , ADN/química , Terapia Genética/métodos , Glicoproteínas/química , Células HCT116 , Células HEK293 , VIH-1/metabolismo , Células HeLa , Histidina/química , Humanos , Virus de la Leucemia del Gibón , Datos de Secuencia Molecular , Péptidos/química , Homología de Secuencia de Aminoácido , Transducción Genética , Transfección
11.
Hum Gene Ther Clin Dev ; 25(3): 178-85, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25073060

RESUMEN

Human immunodeficiency virus type 1-derived lentiviral vectors (LVs) are becoming major tools for gene transfer approaches. Several gene therapy clinical studies involving LVs are currently ongoing. Industrial production of clinical-grade LVs is therefore an important challenge. Some improvements in LV production protocols have already been possible by acting on multiple steps of the production process like transfection, cell culture, or media optimizations. Yet, the effects of physicochemical parameters such as pH remain poorly studied. Mammalian cell cultures are generally performed at neutral pH, which may not be the optimal condition to produce high quantities of LVs with optimal infectious properties. In this study, we showed that lentiviral transient production in HEK293T cells is inversely dependent on the pH value of the harvesting medium. Infectious and physical titers of LVs pseudotyped with GALVTR or VSV-G glycoproteins are enhanced by two- to threefold at pH 6 compared with neutral conditions. pH 6-produced LVs are highly infectious on cell lines but also on relevant primary target cells like hCD34+ hematopoietic stem/progenitor cells. GALVTR-LV particles produced at pH 6 are highly stable at 37 °C and resistant to multiple freeze-thaw cycles. Higher levels of expression of intracellular pr55gag polyproteins are observed within HEK293T producer cells cultured at pH 6. The positive effect of pH 6 conditions is also observed for moloney-derived retroviral vectors produced from NIH-3T3 fibroblasts, arguing that the mildly acidic pH effect is not limited to the lentivirus genus and is reproducible in various producer cell lines. This observation may help us in the design of more effective LV production protocols for clinical applications.


Asunto(s)
Vectores Genéticos/biosíntesis , Lentivirus/crecimiento & desarrollo , Retroviridae/crecimiento & desarrollo , Antígenos CD34/metabolismo , Terapia Genética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HCT116 , Células HEK293 , Células Madre Hematopoyéticas , Humanos , Concentración de Iones de Hidrógeno , Transducción Genética , Transfección , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo
12.
Hum Gene Ther Methods ; 25(1): 48-56, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24152219

RESUMEN

Lentiviral vectors (LVs) are used for various gene transfer applications, notably for hematopoietic gene therapy, but methods are lacking for precisely evaluating parameters that control the efficiency of transduction in relation to the entry of vectors into target cells. We adapted a fluorescence resonance energy transfer-based human immunodeficiency virus-1 fusion assay to measure the entry of nonreplicative recombinant LVs in various cell types, including primary human hematopoietic stem progenitor cells (HSPCs), and to quantify the level of transduction of the same initially infected cells. The assay utilizes recombinant LVs containing ß-lactamase (BLAM)-Vpr chimeric proteins (BLAM-LVs) and encoding a truncated form of the low-affinity nerve growth factor receptor (ΔNGFR). After infection of target cells with BLAM-LVs, the vector entry rapidly leads to BLAM-Vpr release into the cytoplasm, which is measured by cleavage of a fluorescent substrate using flow cytometry. Parallel cultures of the same infected cells show transduction efficiency resulting from ΔNGFR expression. This LV-based fusion/transduction assay is a dynamic and versatile tool, revealing, for instance, the postentry restrictions of LVs known to occur in cells of hematopoietic origin, especially human HSPCs. Furthermore, this BLAM-LV assay allowed us to evaluate the effect of cytokine prestimulation of HSPCs on the entry step of LVs. The assay also shows that transduction enhancers such as Vectofusin-1 or Retronectin can partially relieve the postentry block, but their effects differ in how they promote LV entry. In conclusion, one such assay should be useful to study hematopoietic postentry restrictions directed against LVs and therefore should allow improvements in various LV-based gene therapy protocols.


Asunto(s)
Antígenos CD34/metabolismo , Vectores Genéticos/metabolismo , VIH-1/genética , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Transducción Genética , Células Cultivadas , Citocinas/farmacología , Vectores Genéticos/genética , Células HCT116 , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Receptor de Factor de Crecimiento Nervioso/genética , Receptor de Factor de Crecimiento Nervioso/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...