Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 14691, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673923

RESUMEN

We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key HIV-1 protein. It has been considered exclusively a single-pass membrane protein. Previous observations show that this protein forms stable oligomers in aqueous solution, but details about these oligomers still remain obscure. This is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. In this study we made use of protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy to better elucidate the nature of the soluble oligomers. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM suggests that the oligomeric state most likely is a hexamer/heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distal C-terminal region of Vpu is highly flexible. Our observations are consistent with both the concept of specific interactions among TM helices or the core of the oligomers being stabilized by hydrophobic forces. While this study does not resolve all of the questions about Vpu oligomers or their functional role in HIV-1 it provides new fundamental information about the size and nature of the oligomeric interactions.


Asunto(s)
Pabellón Auricular , Seropositividad para VIH , VIH-1 , Humanos , Cromatografía en Gel , Microscopía por Crioelectrón
2.
bioRxiv ; 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37214796

RESUMEN

We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key to HIV-1 protein. It has been considered exclusively a single-pass membrane protein. However, we revealed that this protein forms stable oligomers in aqueous solution, which is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. Therefore, we undertook a study to characterize these oligomers by utilizing protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM analyses suggest that the oligomeric state most likely is a hexamer or hexamer-to-heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distant C-terminal region of Vpu is highly flexible. To the best of our knowledge, this is the first comprehensive study on soluble Vpu. We propose that these oligomers are stabilized via possibly hydrophobic interactions between Vpu TMs. Our findings contribute valuable information about this protein properties and about protein supramolecular complexes formation. The acquired knowledge could be further used in protein engineering, and could also help to uncover possible physiological function of these Vpu oligomers.

3.
J Struct Biol ; 215(1): 107943, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796461

RESUMEN

The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in ß-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.


Asunto(s)
VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Membrana Celular/metabolismo , Escherichia coli , VIH-1/química , Canales Iónicos/química , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas Viroporinas/química , Proteínas Reguladoras y Accesorias Virales/química
4.
Membranes (Basel) ; 11(9)2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34564502

RESUMEN

Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.

5.
Cells ; 9(7)2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32630835

RESUMEN

Gene editing that makes target gene modification in the genome by deletion or addition has revolutionized the era of biomedicine. Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 emerged as a substantial tool due to its simplicity in use, less cost and extraordinary efficiency than the conventional gene-editing tools, including zinc finger nucleases (ZFNs) and Transcription activator-like effector nucleases (TALENs). However, potential off-target activities are crucial shortcomings in the CRISPR system. Numerous types of approaches have been developed to reduce off-target effects. Here, we review several latest approaches to reduce the off-target effects, including biased or unbiased off-target detection, cytosine or adenine base editors, prime editing, dCas9, Cas9 paired nickase, ribonucleoprotein (RNP) delivery and truncated gRNAs. This review article provides extensive information to cautiously interpret off-target effects to assist the basic and clinical applications in biomedicine.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Animales , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Reparación del ADN , Edición Génica/normas , Humanos , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
6.
Brief Bioinform ; 15(1): 91-107, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23142828

RESUMEN

Metabolites and their pathways are central for adaptation and survival. Metabolic modeling elucidates in silico all the possible flux pathways (flux balance analysis, FBA) and predicts the actual fluxes under a given situation, further refinement of these models is possible by including experimental isotopologue data. In this review, we initially introduce the key theoretical concepts and different analysis steps in the modeling process before comparing flux calculation and metabolite analysis programs such as C13, BioOpt, COBRA toolbox, Metatool, efmtool, FiatFlux, ReMatch, VANTED, iMAT and YANA. Their respective strengths and limitations are discussed and compared to alternative software. While data analysis of metabolites, calculation of metabolic fluxes, pathways and their condition-specific changes are all possible, we highlight the considerations that need to be taken into account before deciding on a specific software. Current challenges in the field include the computation of large-scale networks (in elementary mode analysis), regulatory interactions and detailed kinetics, and these are discussed in the light of powerful new approaches.


Asunto(s)
Análisis de Flujos Metabólicos/estadística & datos numéricos , Modelos Biológicos , Programas Informáticos , Algoritmos , Biología Computacional , Simulación por Computador , Cinética , Análisis de Flujos Metabólicos/tendencias , Redes y Vías Metabólicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA