Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Cell Res ; 1870(4): 119449, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858209

RESUMEN

Ribosomal protein S6 kinase 1 (S6K1), a major downstream effector molecule of mTORC1, regulates cell growth and proliferation by modulating protein translation and ribosome biogenesis. We have recently identified eIF4E as an intermediate in transducing signals from mTORC1 to S6K1 and further demonstrated that the role of mTORC1 is restricted to inducing eIF4E phosphorylation and interaction with S6K1. This interaction relieves S6K1 auto-inhibition and facilitates its hydrophobic motif (HM) phosphorylation and activation as a consequence. These observations underscore a possible involvement of mTORC1 independent kinase in mediating HM phosphorylation. Here, we report mTORC2 as an in-vivo/physiological HM kinase of S6K1. We show that rapamycin-resistant S6K1 truncation mutant ∆NH∆CT continues to display HM phosphorylation with selective sensitivity toward Torin-1. We also show that HM phosphorylation of wildtype S6K1and ∆NH∆CT depends on the presence of mTORC2 regulatory subunit-rictor. Furthermore, truncation mutagenesis and molecular docking analysis reveal the involvement of a conserved 19 amino acid stretch of S6K1 in mediating interaction with rictor. We finally show that deletion of the 19 amino acid region from wildtype S6K1 results in loss of interaction with rictor, with a resultant loss of HM phosphorylation regardless of the presence of functional TOS motif. Our data demonstrate that mTORC2 acts as a physiological HM kinase that can activate S6K1 after its auto-inhibition is overcome by mTORC1. We, therefore, propose a novel mechanism for S6K1 regulation where mTOR complexes 1 and 2 act in tandem to activate the enzyme.


Asunto(s)
Factor 4E Eucariótico de Iniciación , Serina-Treonina Quinasas TOR , Aminoácidos , Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Simulación del Acoplamiento Molecular , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
2.
J Cell Physiol ; 237(8): 3257-3277, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35791448

RESUMEN

Autophagy is an evolutionarily conserved multistep degradation mechanism in eukaryotes, that maintains cellular homoeostasis by replenishing cells with nutrients through catabolic lysis of the cytoplasmic components. This critically coordinated pathway involves sequential processing events that begin with initiation, nucleation, and elongation of phagophores, followed by the formation of  double-membrane vesicles known as autophagosomes. Finally, autophagosomes migrate towards and fuse with lysosomes in mammals and vacuoles in yeast and plants, for the eventual degradation of the intravesicular cargo. Here, we review the recent advances in our understanding of the molecular events that define the process of autophagy.


Asunto(s)
Autofagosomas , Autofagia , Animales , Autofagosomas/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Lisosomas/metabolismo , Mamíferos/metabolismo , Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Sci Rep ; 11(1): 16574, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34400729

RESUMEN

Cold stress is considered as one of the major environmental factors that adversely affects the plant growth and distribution. Therefore, there arises an immediate need to cultivate effective strategies aimed at developing stress-tolerant crops that would boost the production and minimise the risks associated with cold stress. In this study, a novel cold-responsive protein1 (BoCRP1) isolated from Brassica oleracea was ectopically expressed in a cold susceptible tomato genotype Shalimar 1 and its function was investigated in response to chilling stress. BoCRP1 was constitutively expressed in all the tissues of B. oleracea including leaf, root and stem. However, its expression was found to be significantly increased in response to cold stress. Moreover, transgenic tomato plants expressing BoCRP1 exhibited increased tolerance to chilling stress (4 °C) with an overall improved rate of seed germination, increased root length, reduced membrane damage and increased accumulation of osmoprotectants. Furthermore, we observed increased transcript levels of stress responsive genes and enhanced accumulation of reactive oxygen species scavenging enzymes in transgenic plants on exposure to chilling stress. Taken together, these results strongly suggest that BoCRP1 is a promising candidate gene to improve the cold stress tolerance in tomato.


Asunto(s)
Brassica/genética , Respuesta al Choque por Frío/genética , Genes de Plantas , Proteínas de Plantas/fisiología , Plantas Modificadas Genéticamente/genética , Solanum lycopersicum/genética , Secuencia de Aminoácidos , Brassica/fisiología , Frío , Secuencia Conservada , Depuradores de Radicales Libres , Germinación/genética , Solanum lycopersicum/fisiología , Especificidad de Órganos , Presión Osmótica , Filogenia , Proteínas de Plantas/genética , Estructuras de las Plantas/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN de Planta/biosíntesis , ARN de Planta/genética , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Plantones/crecimiento & desarrollo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
4.
Cell Cycle ; 20(9): 839-854, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33938392

RESUMEN

Eukaryotic translation initiation factor 4E was recently shown to be a substrate of mTORC1, suggesting it may be a mediator of mTORC1 signaling. Here, we present evidence that eIF4E phosphorylated at S209 interacts with TOS motif of S6 Kinase1 (S6K1). We also show that this interaction is sufficient to overcome rapamycin sensitivity and mTORC1 dependence of S6K1. Furthermore, we show that eIF4E-TOS interaction relieves S6K1 from auto-inhibition due to carboxy terminal domain (CTD) and primes it for hydrophobic motif (HM) phosphorylation and activation in mTORC1 independent manner. We conclude that the role of mTORC1 is restricted to engaging eIF4E with S6K1-TOS motif to influence its state of HM phosphorylation and inducing its activation.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Quinasas S6 Ribosómicas/química , Proteínas Quinasas S6 Ribosómicas/metabolismo , Secuencias de Aminoácidos , Animales , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación/efectos de los fármacos , Unión Proteica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Sirolimus/farmacología
5.
Biochem Biophys Res Commun ; 527(2): 489-495, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32336547

RESUMEN

Translational regulation has invited considerable interest consequent of its circumstantial dysregulation during cancer genesis. eIF4E (Eukaryotic Initiation Factor 4E) has been identified as an important factor involved in tumor progression by way of instrumenting the convergence of oncogenic signals for up-regulation of Cap-dependent translation. In the backdrop of dramatic eIF4E over-expression in a large population of human cancers, we suggest that the tumorigenic property of eIF4E is strictly attributed to its phosphorylation state. We provide evidence that while phosphorylated eIF4E fails to be sequestered by 4E-BP1, its dephosphorylated form shows overwhelming binding with 4E-BP1 without any consideration to the state of 4E-BP1 phosphorylation to suggest that eIF4E-4EBP1 binding is governed by eIF4E phosphorylation instead of 4E-BP1. We also show that eIF4E engages in Cap-assembly formation preferably in a phosphorylation-dependent manner to suggest that eIF4E phosphorylation rather than 4E-BP1 regulates its availability for Cap-assembly.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Caperuzas de ARN/metabolismo , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Fosforilación , Unión Proteica
6.
Mol Cell Biochem ; 465(1-2): 13-26, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31782083

RESUMEN

Cellular signals that influence Cap-dependent translation have assumed significant relevance in the backdrop of their enforced dysregulation during oncogenesis. Eukaryotic initiation factor 4E(eIF4E), the mRNA cap-binding protein, has emerged as a key player to facilitate tumor progression through upregulated cap-dependent translation synchronized with enhanced cell division. We provide evidence that eIF4E phosphorylation is regulated by mTORC1 by virtue of its interaction with Raptor through a novel TPTPNPP motif and consequent phosphorylation invitro and in vivo in a Rapamycin-sensitive manner. While we show that phosphorylation pattern of eIF4E responds faithfully to Rapamycin inhibition, the prolonged exposure to Rapamycin rescues the loss of eIF4E phosphorylation through Mnk1 activation. We also present evidence that eIF4E interacts with the amino terminal domain of S6K1 in a phospho-dependent manner, and this interaction is instrumental in overriding Rapamycin inhibition of S6K1. The data endorses eIF4E as a regulatory subunit that modulates the functional attributes of mTOR effectors to synchronize cap-dependent translation with growth assertion.


Asunto(s)
Factor 4E Eucariótico de Iniciación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Secuencias de Aminoácidos , Animales , Factor 4E Eucariótico de Iniciación/genética , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Células 3T3 NIH , Fosforilación/efectos de los fármacos , Fosforilación/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína Reguladora Asociada a mTOR/genética , Proteína Reguladora Asociada a mTOR/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Sirolimus/farmacología
7.
Int J Biol Macromol ; 125: 651-659, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30552925

RESUMEN

The cap dependent translation initiation is a tightly controlled process of cooperative ternary complex formation by 4E-BP1, eIF4E and the 5' cap of eukaryotic mRNA in response to environmental cues like glucose, nutrients and growth factor levels. Based on the well-described effects of mTORC1/rapamycin complex on 4E-BP1 phosphorylation/s, it is generally accepted that rapamycin is a global inhibitor of cap-dependent translation. We have previously shown that 4E-BP1 resistance to rapamycin was overcome by the stoichiometric abundance of S6K1. Now we present evidence that the TOS-bearing amino terminal domain of S6K1 is sufficient to relieve the rapamycin resistance of 4E-BP1 as TOS deleted variants of S6K1, active or inactive with regard to S6K1 activity failed to bring about relief of 4E-BP1 resistance to rapamycin. We also show that the reciprocal inactivation of S6K1 by abundance of 4E-BP1 gets accomplished only with intact TOS motif in the protein. The data presented in this study identifies eIF4E and not Raptor as a cellular factor responsible to regulate rapamycin sensitivity of 4E-BP1 suggesting that the phosphorylation dynamics and rapamycin sensitivity of 4E-BP1 and S6K1 are regulated independently.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Factor 4E Eucariótico de Iniciación/metabolismo , Fosfoproteínas/metabolismo , Sirolimus/farmacología , Proteínas de Ciclo Celular , Línea Celular , Farmacorresistencia Bacteriana/fisiología , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosforilación/fisiología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...