Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Reprod ; 2024 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-38431531

RESUMEN

KEY MESSAGE: The combination of a flow cytometric seed screen and genotyping of each single seed offers a cost-effective approach to detecting complex reproductive pathways in flowering plants. Reproduction may be seen as one of the driving forces of evolution. Flow cytometric seed screen and genotyping of parents and progeny are commonly employed techniques to discern various modes of reproduction in flowering plants. Nevertheless, both methods possess limitations constraining their individual capacity to investigate reproductive modes thoroughly. We implemented both methods in a novel manner to analyse reproduction pathways using a carefully selected material of parental individuals and their seed progeny. The significant advantage of this approach lies in its ability to apply both methods to a single seed. The introduced methodology provides valuable insights into discerning the levels of apomixis, sexuality, and selfing in complex Rubus taxa. The results may be explained by the occurrence of automixis in Rubus, which warrants further investigation. The approach showcased its effectiveness in a different apomictic system, specifically in Taraxacum. Our study presents a comprehensive methodological approach for determining the mode of reproduction where flow cytometry loses its potential. It provides a reliable and cost-effective method with significant potential in biosystematics, population genetics, and crop breeding.

2.
PhytoKeys ; 201: 77-97, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762309

RESUMEN

Nepenthespudica, a new species from North Kalimantan, Indonesia, is described and illustrated. The species belongs to the N.hirsuta group (sensu Cheek and Jebb 1999) but exhibits some characters that are unique within the group or even within the genus. Above all, it produces underground, achlorophyllous shoots with well-developed, ventricose lower pitchers that form in soil cavities or directly in the soil. No lower pitchers are formed above ground. The main part of its prey are ants, besides other litter- and soil-inhabiting species of invertebrates. A number of infaunal species were found in both aerial and underground pitchers, mainly Diptera and nematodes. Nepenthespudica is known only from a few neighbouring localities in the Mentarang Hulu district of North Kalimantan, where it grows on ridgetops at an elevation of 1100-1300 m. Its discovery underlines the natural richness of Borneo's rainforest and the necessity to preserve this important ecosystem with its enormous and still undiscovered biodiversity.

3.
Int J Mol Sci ; 20(7)2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30974846

RESUMEN

Reproductive isolation is an important component of species differentiation. The plastid accD gene coding for the acetyl-CoA carboxylase subunit and the nuclear bccp gene coding for the biotin carboxyl carrier protein were identified as candidate genes governing nuclear-cytoplasmic incompatibility in peas. We examined the allelic diversity in a set of 195 geographically diverse samples of both cultivated (Pisum sativum, P. abyssinicum) and wild (P. fulvum and P. elatius) peas. Based on deduced protein sequences, we identified 34 accD and 31 bccp alleles that are partially geographically and genetically structured. The accD is highly variable due to insertions of tandem repeats. P. fulvum and P. abyssinicum have unique alleles and combinations of both genes. On the other hand, partial overlap was observed between P. sativum and P. elatius. Mapping of protein sequence polymorphisms to 3D structures revealed that most of the repeat and indel polymorphisms map to sequence regions that could not be modeled, consistent with this part of the protein being less constrained by requirements for precise folding than the enzymatically active domains. The results of this study are important not only from an evolutionary point of view but are also relevant for pea breeding when using more distant wild relatives.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Alelos , Núcleo Celular/genética , Citoplasma/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Plastidios/genética , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Domesticación , Pisum sativum/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plastidios/metabolismo , Aislamiento Reproductivo
4.
Comp Cytogenet ; 12(3): 403-420, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30275930

RESUMEN

The species-rich and widespread genus Taraxacum F. H. Wiggers, 1780 (Asteraceae subfamily Cichorioideae) is one of the most taxonomically complex plant genera in the world, mainly due to its combination of different sexual and asexual reproduction strategies. Polyploidy is usually confined to apomictic microspecies, varying from 3x to 6x (rarely 10x). In this study, we focused on Taraxacum sect. Taraxacum (= T.sect.Ruderalia; T.officinale group), i.e., the largest group within the genus. We counted chromosome numbers and measured the DNA content for species sampled in Central Europe, mainly in Czechia. The chromosome number of the 28 species (T.aberrans Hagendijk, Soest & Zevenbergen, 1974, T.atroviride Stepánek & Trávnícek, 2008, T.atrox Kirschner & Stepánek, 1997, T.baeckiiforme Sahlin, 1971, T.chrysophaenum Railonsala, 1957, T.coartatum G.E. Haglund, 1942, T.corynodes G.E. Haglund, 1943, T.crassum H. Øllgaard & Trávnícek, 2003, T.deltoidifrons H. Øllgaard, 2003, T.diastematicum Marklund, 1940, T.gesticulans H. Øllgaard, 1978, T.glossodon Sonck & H. Øllgaard, 1999, T.guttigestans H. Øllgaard in Kirschner & Stepánek, 1992, T.huelphersianum G.E. Haglund, 1935, T.ingens Palmgren, 1910, T.jugiferum H. Øllgaard, 2003, T.laticordatum Marklund, 1938, T.lojoense H. Lindberg, 1944 (= T.debrayi Hagendijk, Soest & Zevenbergen, 1972, T.lippertianum Sahlin, 1979), T.lucidifrons Trávnícek, ineditus, T.obtusifrons Marklund, 1938, T.ochrochlorum G.E. Haglund, 1942, T.ohlsenii G.E. Haglund, 1936, T.perdubium Trávnícek, ineditus, T.praestabile Railonsala, 1962, T.sepulcrilobum Trávnícek, ineditus, T.sertatum Kirschner, H. Øllgaard & Stepánek, 1997, T.subhuelphersianum M.P. Christiansen, 1971, T.valens Marklund, 1938) is 2n = 3x = 24. The DNA content ranged from 2C = 2.60 pg (T.atrox) to 2C = 2.86 pg (T.perdubium), with an average value of 2C = 2.72 pg. Chromosome numbers are reported for the first time for 26 species (all but T.diastematicum and T.obtusifrons), and genome size estimates for 26 species are now published for the first time.

5.
PLoS One ; 12(2): e0168008, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28182646

RESUMEN

Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávnicek ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in plastomes is important to characterize the nature of evolutionary processes in nuclear and cytoplasmic genomes with the different selection pressures, population structures and breeding systems.


Asunto(s)
Evolución Molecular , Genes de Plantas , Genoma del Cloroplasto , Filogenia , Polimorfismo de Nucleótido Simple , Taraxacum/genética , Especificidad de la Especie , Taraxacum/clasificación
6.
Protoplasma ; 252(5): 1325-33, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25652809

RESUMEN

With the exception of the sunflower, little information concerning the micropyle ultrastructure of the family Asteraceae is available. The aim of our study was to compare the micropyle structure in amphimictic and apomictic dandelions. Ultrastructural studies using buds and flowers during anthesis have been done on the micropyle of the sexual and apomictic Taraxacum. In all of the species that were examined, the micropylar canal was completely filled with ovule transmitting tissue and the matrix that was produced by these cells. The ovule transmitting tissue was connected to the ovarian transmitting tissue. The micropyle was asymmetrical because the integument epidermis that forms the transmitting tissue was only on the funicular side. There was a cuticle between the obturator cells and epidermal cells on the other side of integument. The micropylar transmitting tissue cells and theirs matrix reached the synergid apex. The cytoplasm of the transmitting tissue cells was especially rich in rough endoplasmic reticulum (ER), dictyosomes, and mitochondria. No major differences were detected between the micropyle structure of the amphimictic and apomictic species; thus, a structural reduction of obturator does not exist. The ovule transmitting tissue is still active in apomictic dandelions despite the presence of the embryo and endosperm. Differences and similarities between the micropyle structure in the Asteraceae that have been studied to date are discussed.


Asunto(s)
Tubo Polínico/ultraestructura , Taraxacum/ultraestructura , Endospermo/ultraestructura , Epidermis de la Planta/ultraestructura
7.
PLoS One ; 7(8): e41868, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870257

RESUMEN

Dandelions (genus Taraxacum) comprise a group of sexual diploids and apomictic polyploids with a complicated reticular evolution. Apomixis (clonal reproduction through seeds) in this genus is considered to be obligate, and therefore represent a good model for studying the role of asexual reproduction in microevolutionary processes of apomictic genera. In our study, a total of 187 apomictic individuals composing a set of nine microspecies (sampled across wide geographic area in Europe) were genotyped for six microsatellite loci and for 162 amplified fragment length polymorphism (AFLP) markers. Our results indicated that significant genetic similarity existed within accessions with low numbers of genotypes. Genotypic variability was high among accessions but low within accessions. Clustering methods discriminated individuals into nine groups corresponding to their phenotypes. Furthermore, two groups of apomictic genotypes were observed, which suggests that they had different asexual histories. A matrix compatibility test suggests that most of the variability within accession groups was mutational in origin. However, the presence of recombination was also detected. The accumulation of mutations in asexual clones leads to the establishment of a network of clone mates. However, this study suggests that the clones primarily originated from the hybridisation between sexual and apomicts.


Asunto(s)
Sitios Genéticos/fisiología , Variación Genética , Genotipo , Repeticiones de Microsatélite/genética , Poliploidía , Taraxacum/genética , Reproducción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...