Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biodivers Data J ; 12: e106199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38344169

RESUMEN

Background: Incomplete species inventories for Antarctica represent a key challenge for comprehensive ecological research and conservation in the region. Additionally, data required to understand population dynamics, rates of evolution, spatial ranges, functional traits, physiological tolerances and species interactions, all of which are fundamental to disentangle the different functional elements of Antarctic biodiversity, are mostly missing. However, much of the fauna, flora and microbiota in the emerged ice-free land of the continent have an uncertain presence and/or unresolved status, with entire biodiversity compendia of prokaryotic groups (e.g. bacteria) being missing. All the available biodiversity information requires consolidation, cross-validation, re-assessment and steady systematic inclusion in order to create a robust catalogue of biodiversity for the continent. New information: We compiled, completed and revised eukaryotic species inventories present in terrestrial and freshwater ecosystems in Antarctica in a new living database: terrANTALife (version 1.0). The database includes the first integration in a compendium for many groups of eukaryotic microorganisms. We also introduce a first catalogue of amplicon sequence variants (ASVs) of prokaryotic biodiversity. Available compendia and literature to date were searched for Antarctic terrestrial and freshwater species, integrated, taxonomically harmonised and curated by experts to create comprehensive checklists of Antarctic organisms. The final inventories comprises 470 animal species (including vertebrates, free-living invertebrates and parasites), 306 plants (including all Viridiplantae: embryophytes and green algae), 997 fungal species and 434 protists (sensu lato). We also provide a first account for many groups of microorganisms, including non-lichenised fungi and multiple groups of eukaryotic unicellular species (Stramenophila, Alveolata and Rhizaria (SAR), Chromists and Amoeba), jointly referred to as "protists". In addition, we identify 1753 bacterial (obtained from 348117 ASVs) and 34 archaeal genera (from 1848 ASVs), as well as, at least, 14 virus families. We formulate a basic tree of life in Antarctica with the main lineages listed in the region and their "known-accepted-species" numbers.

2.
Sci Rep ; 12(1): 15116, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068258

RESUMEN

Our understanding of the importance of microbiomes on large aquatic animals-such as whales, sea turtles and manatees-has advanced considerably in recent years. The latest observations indicate that epibiotic diatom communities constitute diverse, polyphyletic, and compositionally stable assemblages that include both putatively obligate epizoic and generalist species. Here, we outline a successful approach to culture putatively obligate epizoic diatoms without their hosts. That some taxa can be cultured independently from their epizoic habitat raises several questions about the nature of the interaction between these animals and their epibionts. This insight allows us to propose further applications and research avenues in this growing area of study. Analyzing the DNA sequences of these cultured strains, we found that several unique diatom taxa have evolved independently to occupy epibiotic habitats. We created a library of reference sequence data for use in metabarcoding surveys of sea turtle and manatee microbiomes that will further facilitate the use of environmental DNA for studying host specificity in epizoic diatoms and the utility of diatoms as indicators of host ecology and health. We encourage the interdisciplinary community working with marine megafauna to consider including diatom sampling and diatom analysis into their routine practices.


Asunto(s)
Diatomeas , Tortugas , Animales , Diatomeas/genética , Ecología , Ecosistema , Tortugas/genética
4.
Protist ; 172(3): 125816, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34271527

RESUMEN

Hyalosira gene sequences are divided into two clades within different families. We examined authentic material of Hyalosira (isotype material of H. obtusangula, synonymous with H. delicatula) and voucher specimens of published sequences, and pooled our observations of Hyalosira-like taxa from benthic and epizoic habitats in several parts of the globe. The two molecular clades corresponded to two morphological groups, with Hyalosira obtusangula associated with Grammatophoraceae. We emend the description and provide lectotypification for Hyalosira and propose Placosira to encompass the taxa in the other clade, associated with Rhabdonemataceae. We propose that Hyalosira has uniseriate to triseriate striae, sometimes different on valve face and mantle. Copulae in most species had shallow septa, though in one they were moderately deep. All species had girdle bands bearing two rows of areolae separated by a midrib. We name five new species of Hyalosira. Morphologies of taxa in the Placosira clade were superficially similar to Hyalosira but differed in having areolae with ricae, a single row of areolae on the girdle bands, and tubular rimoportulae on the valve-face-mantle junction. Hyalosira hustedtiana Patrick should revert to its original position in Striatella until the appropriate genus can be determined. We emend Rhabdonematales to encompass Rhabdonemataceae, Grammatophoraceae and Tabellariaceae.


Asunto(s)
Diatomeas , Aprepitant , Diatomeas/genética , Ecosistema , Humanos , Filogenia
5.
J Phycol ; 57(2): 698-701, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340410

RESUMEN

The inability to thoroughly examine diatom type material existing only in resin-mounted permanent slides is a common frustration for diatomologists. Here, we present an efficient, inexpensive, and straightforward technique to extract siliceous exoskeletons of diatoms from permanent slides prepared with commonly used mounting media. Van Heurck's slide constituting an isotype duplicate of Proschkinia bulnheimii var. belgica, an entity with an uncertain taxonomic status, was deconstructed to allow thorough examination using scanning electron microscopy. Numerous specimens of the taxon, including intact frustules and specimens with complete areola occlusions, were recovered and documented. The extracted diatom material was sufficient to prepare two scanning electron microscopy specimens and reconstruct the permanent slide. The proposed approach may help overcome many of the taxonomic bottlenecks associated with the low resolution of information provided by older diatom descriptions and permanent slide observations.


Asunto(s)
Diatomeas , Microscopía Electrónica de Rastreo
6.
J Phycol ; 57(1): 199-218, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33098095

RESUMEN

The current study focuses on four species from the primarily marine diatom genus Craspedostauros that were observed growing attached to numerous sea turtles and sea turtle-associated barnacles from Croatia and South Africa. Three of the examined taxa, C. danayanus sp. nov., C. legouvelloanus sp. nov., and C. macewanii sp. nov., are described based on morphological and, whenever possible, molecular characteristics. The new taxa exhibit characters not previously observed in other members of the genus, such as the presence of more than two rows of cribrate areolae on the girdle bands, shallow perforated septa, and a complete reduction of the stauros. The fourth species, C. alatus, itself recently described from museum sea turtle specimens, is reported for the first time from loggerhead sea turtles rescued in Europe. A 3-gene phylogenetic analysis including DNA sequence data for three sea turtle-associated Craspedostauros species and other marine and epizoic diatom taxa indicated that Craspedostauros is monophyletic and sister to Achnanthes. This study, being based on a large number of samples and animal specimens analyzed and using different preservation and processing methods, provides new insights into the ecology and biogeography of the genus and sheds light on the level of intimacy and permanency in the host-epibiont interaction within the epizoic Craspedostauros species.


Asunto(s)
Diatomeas , Tortugas , Animales , Croacia , Europa (Continente) , Filogenia , Sudáfrica
7.
PLoS One ; 15(7): e0236513, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726804

RESUMEN

Epizoic diatoms form an important part of micro-epibiota of marine vertebrates such as whales and sea turtles. The present study explores and compares the diversity and biogeography of diatom communities growing on the skin and shell of loggerhead sea turtles (Caretta caretta) from four different localities: Adriatic Sea (Croatia), Ionian Sea (Greece), South Africa and Florida Bay (USA) using both light and scanning electron microscopy. We observed almost 400 diatom taxa belonging to more than 100 genera. Diatom communities from Greece and Croatia showed the highest similarity and were statistically different from those recorded from South Africa and Florida. Part of this variation could be attributed to differences in sampling techniques; however, we believe that geography had an important role. In general, contrary to several previous observations from sea turtles, the presumably exclusively epizoic diatoms contributed less than common benthic taxa to the total diatom flora, which might have been related to the loggerhead feeding behavior. Moreover, skin samples differed from carapace samples in having a distinct diatom composition with a higher proportion of the putative true epizoonts. Our results indicate that epizoic diatom communities differ according to loggerhead geographical location and substrate (skin vs. carapace). The relative abundances of common benthic diatoms and putative exclusive epizoic taxa may inform about sea turtle habitat use or behavior though detailed comparisons among different host species have yet to be performed.


Asunto(s)
Diatomeas/crecimiento & desarrollo , Tortugas/fisiología , Animales , Biodiversidad , Análisis por Conglomerados , Croacia , Ecosistema , Florida , Grecia , Microscopía Electrónica de Rastreo , Sudáfrica
8.
J Phycol ; 56(4): 1019-1027, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32198928

RESUMEN

With the advent of more comprehensive research into the microbiome and interactions between animals and their microbiota, new solutions can be applied to address conservation challenges such as husbandry and medical care of captive animals. Although studies on epizoic algae are relatively rare, and the function and role of those mainly photosynthetic organisms in the animal microbiome is not well understood, recent surveys on epizoic diatoms show that some of them exhibit traits of obligate epibionts. This study explores diatom communities on captive-born manatees from the Africarium in Wroclaw, Poland. Light and scanning electron microscopy analyses revealed that skin of all animals sampled was dominated by apochlorotic Tursiocola cf. ziemanii, an epizoic species described recently from Florida manatees, that reached 99,9% of the total diatom abundance. Despite using media with a wide range of salinity (0-34), the isolated Tursiocola cells did not grow, whereas the normally pigmented Planothidium sp., that was only occasionally found on the animal substratum, survived in all culture media tested. Our observations provide direct evidence that manatee-associated Tursiocola endure the dramatic salinity changes that occur regularly during their host life cycle, and can thrive in an artificial captive setting, if the manatee substratum is available. The impact of practices and routines used by the Africarium on manatee-associated diatoms, as well as ultrastructure of areolae in Tursiocola, are briefly discussed.


Asunto(s)
Diatomeas , Trichechus manatus , Animales , Polonia , Trichechus
9.
Chem Sci ; 9(13): 3290-3298, 2018 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-29780459

RESUMEN

Significant advances in the understanding of the molecular determinants of fibrillogenesis can be expected from comparative studies of the aggregation propensities of proteins with highly homologous structures but different folding pathways. Here, we fully characterize, by means of stopped-flow, T-jump, CD and DSC experiments, the unfolding mechanisms of three highly homologous proteins, zinc binding Ros87 and Ml153-149 and zinc-lacking Ml452-151. The results indicate that the three proteins significantly differ in terms of stability and (un)folding mechanisms. Particularly, Ros87 and Ml153-149 appear to be much more stable to guanidine denaturation and are characterized by folding mechanisms including the presence of an intermediate. On the other hand, metal lacking Ml452-151 folds according to a classic two-state model. Successively, we have monitored the capabilities of Ros87, Ml452-151 and Ml153-149 to form amyloid fibrils under native conditions. Particularly, we show, by CD, fluorescence, DLS, TEM and SEM experiments, that after 168 hours, amyloid formation of Ros87 has started, while Ml153-149 has formed only amorphous aggregates and Ml452-151 is still monomeric in solution. This study shows how metal binding can influence protein folding pathways and thereby control conformational accessibility to aggregation-prone states, which in turn changes aggregation kinetics, shedding light on the role of metal ions in the development of protein deposition diseases.

10.
Microb Ecol ; 74(4): 969-978, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28477173

RESUMEN

The first reports of diatoms growing on marine mammals date back to the early 1900s. However, only recently has direct evidence been provided for similar associations between diatoms and sea turtles. We present a comparison of diatom communities inhabiting carapaces of green turtles Chelonia mydas sampled at two remote sites located within the Indian (Iran) and Atlantic (Costa Rica) Ocean basins. Diatom observations and counts were carried out using scanning electron microscopy. Techniques involving critical point drying enabled observations of diatoms and other microepibionts still attached to sea turtle carapace and revealed specific aspects of the epizoic community structure. Species-poor, well-developed diatom communities were found on all examined sea turtles. Significant differences between the two host sea turtle populations were observed in terms of diatom abundance and their community structure (including growth form structure). A total of 12 and 22 diatom taxa were found from sea turtles in Iran and Costa Rica, respectively, and eight of these species belonging to Amphora, Chelonicola, Cocconeis, Navicula, Nitzschia and Poulinea genera were observed in samples from both locations. Potential mechanisms of diatom dispersal and the influence of the external environment, sea turtle behaviour, its life stage, and foraging and breeding habitats, as well as epibiotic bacterial flora on epizoic communities, are discussed.


Asunto(s)
Biota , Diatomeas/fisiología , Ecosistema , Tortugas/fisiología , Exoesqueleto , Animales , Costa Rica , Irán
11.
Polar Biol ; 40(4): 873-890, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32226209

RESUMEN

As High Arctic environments are particularly sensitive to global and regional climate changes, a growing number of studies have focused on that region. It has been shown that living and fossil diatoms can be successfully used to track environmental changes in polar habitats. Nevertheless, the diatom flora of many Arctic areas remains unknown. The present study set out to examine the diatom flora in the rarely visited and near-pristine zone of northern Spitsbergen. Examination by light and scanning electron microscopy of 25 sediment samples, collected in fjords, tidal plains and lakes, indicated significant differences between the diatom assemblages identified in lakes located within different fjord watersheds. Altogether, 96 diatom taxa (46 genera) were found. The most abundant species (Achnanthidium minutissimum, Staurosirella pinnata and Nitzschia alpina) occurred in at least eight of the 11 investigated lakes. Assemblages from the Woodfjorden region were characterized by the presence of Cavinula pseudoscutiformis and Encyonema reichardtii, along with Navicula spp., which coincided with relatively low conductivity (34-58.7 µS cm-1) and near-neutral pH (7.2-7.5). Diatom assemblages found in the Wijdefjorden area were typically characterized by Denticula kuetzingii and Nitzschia inconspicua, with these lakes generally having higher water conductivity (>184 µS cm-1) and pH (7.5-8.1) conditions. Conductivity, biogenic silica concentration and water temperature were indicated as significant predictors of diatom community species composition and structure. No diatom frustules were found in fjord and tidal plain sediments. The effects of selected environmental factors on diatom assemblage formation are discussed.

12.
PLoS One ; 11(6): e0157011, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257972

RESUMEN

The macro-epibiotic communities of sea turtles have been subject to growing interest in recent years, yet their micro-epibiotic counterparts are almost entirely unknown. Here, we provide the first evidence that diatoms are epibionts for all seven extant species of sea turtle. Using Scanning Electron Microscopy, we inspected superficial carapace or skin samples from a single representative of each turtle species. We distinguished 18 diatom taxa from these seven individuals, with each sea turtle species hosting at least two diatom taxa. We recommend that future research is undertaken to confirm whether diatom communities vary between sea turtle species and whether these diatom taxa are facultative or obligate commensals.


Asunto(s)
Diatomeas/aislamiento & purificación , Tortugas/microbiología , Animales , Diatomeas/clasificación , Diatomeas/ultraestructura , Microscopía Electrónica de Rastreo
13.
PLoS One ; 11(4): e0153254, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27078637

RESUMEN

Despite recent advances in polar marine biology and related fields, many aspects of the ecological interactions that are crucial for the functioning of Antarctic shallow water habitats remain poorly understood. Although epiphytic diatoms play an essential role in the Antarctic marine food web, basic information regarding their ecology, biodiversity and biogeography is largely unavailable. Here, we synthesise studies on Ross Sea epiphytic diatoms collected during 11 summer Antarctic expeditions between the years 1989/90 and 2011/12, presenting a full list of diatom taxa associated with three macroalgal species (Iridaea cordata, Phyllophora antarctica, and Plocamium cartilagineum) and their epiphytic sessile fauna. Diatom communities found during the three summer months at various depths and sampling stations differed significantly in terms of species composition, growth form structure and abundances. Densities ranged from 21 to >8000 cells mm-2, and were significantly higher on the surface of epiphytic micro-fauna than on any of the macroalgal species examined. Generally, host organisms characterized by higher morphological heterogeneity (sessile microfauna, ramified Plocamium) supported richer diatom communities than those with more uniform surfaces (Iridaea). Differences between epiphytic communities associated with different macroalgae were reflected better in species composition than in growth form structure. The latter changed significantly with season, which was related strongly to the changing ice conditions. A general trend towards an increasing number of erect forms in deeper waters and tube-dwelling diatoms in the shallowest sites (2-5 m) was also observed. This study explores further important and largely previously unknown aspects of relationships and interactions between Antarctic epiphytic diatoms and their micro- and macro-environments.


Asunto(s)
Diatomeas/fisiología , Ecosistema , Cadena Alimentaria , Algas Marinas/fisiología , Regiones Antárticas , Bahías , Diatomeas/clasificación , Diatomeas/ultraestructura , Expediciones , Geografía , Biología Marina , Microscopía Electrónica de Rastreo , Estaciones del Año , Algas Marinas/clasificación , Algas Marinas/ultraestructura
14.
PLoS One ; 10(6): e0130351, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26083535

RESUMEN

Although the sea turtles have long been familiar and even iconic to marine biologists, many aspects of their ecology remain unaddressed. The present study is the first of the epizoic diatom community covering the olive ridley turtle's (Lepidochelys olivacea) carapace and the first describing diatoms living on sea turtles in general, with the primary objective of providing detailed information on turtle epibiotic associations. Samples of turtle carapace including the associated diatom biofilm and epizoic macro-fauna were collected from Ostional beach (9° 59´ 23.7´´ N 85° 41´ 52.6´´ W), Costa Rica, during the arribada event in October 2013. A complex diatom community was present in every sample. In total, 11 macro-faunal and 21 diatom taxa were recorded. Amongst diatoms, the most numerous were erect (Achnanthes spp., Tripterion spp.) and motile (Haslea sp., Navicula spp., Nitzschia spp., Proschkinia sp.) forms, followed by adnate Amphora spp., while the most common macro-faunal species was Stomatolepas elegans (Cirripedia). Diatom densities ranged from 8179 ± 750 to 27685 ± 4885 cells mm-2. Epizoic microalgae were either partly immersed or entirely encapsulated within an exopolymeric coat. The relatively low diatom species number, stable species composition and low inter-sample dissimilarities (14.4% on average) may indicate a mutualistic relationship between the epibiont and the basibiont. Dispersal of sea turtle diatoms is probably highly restricted and similar studies will help to understand both diatom diversity, evolution and biogeography, and sea turtle ecology and foraging strategies.


Asunto(s)
Anfípodos/fisiología , Diatomeas/fisiología , Comportamiento de Nidificación/fisiología , Tortugas/fisiología , Animales , Costa Rica , Microscopía Electrónica de Rastreo , Océano Pacífico , Agua de Mar , Tortugas/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...