Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(34): 16227-16237, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39140363

RESUMEN

The contraction of nanomaterials triggered by stimuli can be harnessed for micro- and nanoscale energy harvesting, sensing, and artificial muscles toward manipulation and directional motion. The search for these materials is dictated by optimizing several factors, such as stimulus type, conversion efficiency, kinetics and dynamics, mechanical strength, compatibility with other materials, production cost and environmental impact. Here, we report the results of studies on bio-inspired nanomembranes made of poly-catecholamines such as polydopamine, polynorepinephrine, and polydextrodopa. Our findings reveal robust mechanical features and remarkable multi-responsive properties of these materials. In particular, their immediate contraction can be triggered globally by atmospheric moisture reduction and temperature rise and locally by laser or white light irradiation. For each scenario, the process is fully reversible, i.e., membranes spontaneously expand upon removing the stimulus. Our results unveil the universal multi-responsive nature of the considered polycatecholamine membranes, albeit with distinct differences in their mechanical features and response times to light stimulus. We attribute the light-triggered contraction to photothermal heating, leading to water desorption and subsequent contraction of the membranes. The combination of multi-responsiveness, mechanical robustness, remote control via light, low-cost and large-scale fabrication, biocompatibility, and low-environment impact makes polycatecholamine materials promising candidates for advancing technologies.

2.
Science ; 384(6700): 1096-1099, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38843325

RESUMEN

Spontaneous mirror symmetry breaking by formation of chiral structures from achiral building blocks and emergent polar order are phenomena rarely observed in fluids. Separately, they have both been found in certain nematic liquid crystalline phases; however, they have never been observed simultaneously. Here, we report a heliconical arrangement of achiral molecules in the ferroelectric nematic phase. The phase is thus spontaneously both polar and chiral. Notably, the pitch of the heliconical structure is comparable to the wavelength of visible light, giving selective reflection controllable by temperature or application of a weak electric field. Despite bearing resemblance to the heliconical twist-bend nematic phase, this chiral ferroelectric nematic phase arises from electrical interactions that induce a noncollinear orientation of electric dipoles.

3.
Adv Mater ; 36(29): e2401137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38742799

RESUMEN

In contrast to biological cell membranes, it is still a major challenge for synthetic membranes to efficiently separate ions and small molecules due to their similar sizes in the sub-nanometer range. Inspired by biological ion channels with their unique channel wall chemistry that facilitates ion sieving by ion-channel interactions, the first free-standing, ultrathin (10-17 nm) nanomembranes composed entirely of polydopamine (PDA) are reported here as ion and molecular sieves. These nanomembranes are obtained via an easily scalable electropolymerization strategy and provide nanochannels with various amine and phenolic hydroxyl groups that offer a favorable chemical environment for ion-channel electrostatic and hydrogen bond interactions. They exhibit remarkable selectivity for monovalent ions over multivalent ions and larger species with K+/Mg2+ of ≈4.2, K+/[Fe(CN)6]3- of ≈10.3, and K+/Rhodamine B of ≈273.0 in a pressure-driven process, as well as cyclic reversible pH-responsive gating properties. Infrared spectra reveal hydrogen bond formation between hydrated multivalent ions and PDA, which prevents the transport of multivalent ions and facilitates high selectivity. Chemically rich, free-standing, and pH-responsive PDA nanomembranes with specific interaction sites are proposed as customizable high-performance sieves for a wide range of challenging separation requirements.

4.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256094

RESUMEN

The fixation of carbon dioxide with epoxides is one of the most attractive methods for the green utilisation of this greenhouse gas and leads to many valuable chemicals. This process is characterised by 100% atom efficiency; however, an efficient catalyst is required to achieve satisfactory yields. Metal-organic frameworks (MOFs) are recognised as being extremely promising for this purpose. Nevertheless, many of the proposed catalysts are based on ions of rare elements or elements not entirely safe for the environment; this is notable with commercially unavailable ligands. In an effort to develop novel catalysts for CO2 fixation on an industrial scale, we propose novel MOFs, which consist of aluminium ions coordinated with commercially available 1,4-naphthalene dicarboxylic acid (Al@NDC) and their nanocomposites with gold nanoparticles entrapped inside their structure (AlAu@NDC). Due to the application of 4-amino triazole and 5-amino tetrazole as crystallization mediators, the morphology of the synthesised materials can be modified. The introduction of gold nanoparticles (AuNPs) into the structure of the synthesised Al-based MOFs causes the change in morphology from nano cuboids to nanoflakes, simultaneously decreasing their porosity. However, the homogeneity of the nanostructures in the system is preserved. All synthesised MOF materials are highly crystalline, and the simulation of PXRD patterns suggests the same tetragonal crystallographic system for all fabricated nanomaterials. The fabricated materials are proven to be highly efficient catalysts for carbon dioxide cycloaddition with a series of model epoxides: epichlorohydrin; glycidol; styrene oxide; and propylene oxide. Applying the synthesised catalysts enables the reactions to be performed under mild conditions (90 °C; 1 MPa CO2) within a short time and with high conversion and yield (90% conversion of glycidol towards glycerol carbonate with 89% product yield within 2 h). The developed nanocatalysts can be easily separated from the reaction mixture and reused several times (both conversion and yield do not change after five cycles). The excellent performance of the fabricated catalytic materials might be explained by their high microporosity (from 421 m2 g-1 to 735 m2 g-1); many catalytic centres in the structure exhibit Lewis acids' behaviour, increased capacity for CO2 adsorption, and high stability. The presence of AuNPs in the synthesised nanocatalysts (0.8% w/w) enables the reaction to be performed with a higher yield within a shorter time; this is especially important for less-active epoxides such as propylene oxide (two times higher yield was obtained using a nanocomposite, in comparison with Al-MOF without nanoparticles).


Asunto(s)
Nanopartículas del Metal , Estructuras Metalorgánicas , Propanoles , Dióxido de Carbono , Oro , Aluminio , Compuestos Epoxi , Iones
5.
Adv Mater ; 36(13): e2310197, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37905376

RESUMEN

Obtaining hierarchical structures with arbitrarily controlled chirality remains a challenge. Here, thin films featuring chiroptically bipolar patterns are produced by a device utilizing microscale photothermal re-melting of materials exhibiting chirality synchronization. This device operates autonomously, guided by an algorithm that facilitates the homochiral growth of supramolecular organic helices through controlling their re-melting. The chirality synchronization phenomena of constitutionally achiral molecules grants availability of both handednesses of the helices, enabling unrestricted chiral writing in the film. The collective chiroptical response of assembled molecules is utilised to guide the patterning process, creating a foundation for optically secured information. The established methodology enables achieving dissymmetry factor values for circular dichroism (CD) a magnitude higher than previously reported, as confirmed with state-of-the-art, synchrotron-based Mueller matrix polarimetry (MMP). Moreover, the developed method is extended to nanocomposites comprising gold nanoparticles, providing the opportunity to tune the CD toward the plasmonic region. This strategic application of photothermal processing, specifically laser-directed melting, uncovers the potential to broaden the selection of nanostructured materials with precisely designed functionalities for photonic applications.

6.
ACS Appl Mater Interfaces ; 15(50): 57970-57980, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37644616

RESUMEN

The synthesis of transition metal oxide nanostructures, thanks to their high surface-to-volume ratio and the resulting large fraction of surface atoms with high catalytic activity, is of prime importance for the development of new sensors and catalytic materials. Here, we report an economical, time-efficient, and easily scalable method of fabricating nanowires composed of vanadium, chromium, manganese, iron, and cobalt oxides by employing simultaneous block copolymer (BCP) self-assembly and selective sequestration of metal-organic acetylacetonate complexes within one of the BCP blocks. We discuss the mechanism and the primary factors that are responsible for the sequestration and conformal replication of the BCP template by the inorganic material that is obtained after the polymer template is removed. X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD) studies indicate that the metal oxidation state in the nanowires produced by plasma ashing the BCP template closely matches that of the precursor complex and that their structure is amorphous, thus requiring high-temperature annealing in order to sinter them into a crystalline form. Finally, we demonstrate how the developed nanowire array fabrication scheme can be used to rapidly pattern a multilayered iron oxide nanomesh, which we then used to construct a prototype volatile organic compound sensor.

7.
Nanotechnology ; 34(32)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37141868

RESUMEN

Autonomous experimentation (AE) is an emerging paradigm that seeks to automate the entire workflow of an experiment, including-crucially-the decision-making step. Beyond mere automation and efficiency, AE aims to liberate scientists to tackle more challenging and complex problems. We describe our recent progress in the application of this concept at synchrotron x-ray scattering beamlines. We automate the measurement instrument, data analysis, and decision-making, and couple them into an autonomous loop. We exploit Gaussian process modeling to compute a surrogate model and associated uncertainty for the experimental problem, and define an objective function exploiting these. We provide example applications of AE to x-ray scattering, including imaging of samples, exploration of physical spaces through combinatorial methods, and coupling toin situprocessing platforms These uses demonstrate how autonomous x-ray scattering can enhance efficiency, and discover new materials.

8.
ACS Nano ; 16(12): 21139-21151, 2022 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-36516967

RESUMEN

Soft materials with self-assembled networks possess saddle-shaped interfaces with distributed negative Gaussian curvatures. The ability to stabilize such a geometry is critically important for various applications but can be challenging due to the possibly "deficient" packing of the building blocks. This nontrivial challenge has been manifested, for example, by the limited availability of cross-linkable bicontinuous cubic (Q) liquid crystals (LCs), which can be utilized to fabricate compelling polymers with networked nanochannels uniformly sized at ∼1 nm. Here, we devise a facile approach to stabilizing cross-linkable Q mesophases by leveraging the synergistic self-assembly from pairs of scalably synthesized polymerizable amphiphiles. Hybridization of the molecular geometries by mixing significantly increases the propensity of the local deviations in the interfacial curvature specifically required for Q assemblies. "Normal" (type 1) double gyroid LCs possessing 1 nm ionic channels conforming to minimal surfaces can be formulated by simultaneous hydration of the amphiphile mixtures, as opposed to the formation of hexagonal or lamellar mesophases exhibited by the single-amphiphile systems, respectively. Fixation of the bicontinuous network in polymers via radical polymerization has been efficaciously facilitated by the presence of the bifunctional polymerizable groups in one of the employed amphiphiles. High-fidelity lock-in of the ordered continuous 1 nm channels has been unambiguously confirmed by the observation of single-crystal-like diffraction patterns from synchrotron small-angle X-ray scattering and large-area periodicities by transmission electron microscopy. The produced polymeric materials exhibit the required mechanical integrity as well as chemical robustness in a variety of organic solvents that benefit their practical applications for selective transport of ions and molecules.

9.
ACS Macro Lett ; 11(1): 121-126, 2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35574792

RESUMEN

Solvent evaporation annealing (SEA) is a straightforward, single-step casting and annealing method of block copolymers (BCP) processing yielding large-grained morphologies in a very short time. Here, we present a quantitative analysis of BCP grain-coarsening in thin films under controlled evaporation of the solvent. Our study is aimed at understanding time and BCP concentration influence on the rate of the lateral growth of BCP grains. By systematically investigating the coarsening kinetics at various BCP concentrations, we observed a steeply decreasing exponential dependence of the kinetics power-law time exponent on polymer concentration. We used this dependence to formulate a mathematical model of BCP ordering under nonstationary conditions and a 2D, time- and concentration-dependent coarsening rate diagram, which can be used as an aid in engineering the BCP processing pathway in SEA and also in other directed self-assembly methods that utilize BCP-solvent interactions such as solvent vapor annealing.

10.
Soft Matter ; 18(21): 4042-4066, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35608282

RESUMEN

Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.

11.
Polymers (Basel) ; 13(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209057

RESUMEN

Here, we report our studies on photoresponsive poly(meth)acrylates containing azobenzene groups connected to a polymer backbone via a short methylene linker. A series of side-chain azobenzene polymers was synthesized via the atom transfer radical polymerization (ATRP) technique using several catalytic systems. The polymers synthesized under the optimized conditions were characterized by a narrow polydispersity (D ≤ 1.35), and they underwent a reversible transformation of their structure under light illumination. The fabricated polymers can store and release energy accumulated during the UV-light illumination by the thermal cis-trans isomerization of the chromophore groups. The enthalpy of the process (determined from DSC) was relatively high and equaled 61.9 J∙g-1 (17 Wh∙kg-1), indicating a high potential of these materials in energy storage applications. The liquid-crystalline behavior of the synthesized poly(meth)acrylates was demonstrated by the birefringent optical textures as observed in thin-films and X-ray scattering studies.

12.
Sci Adv ; 7(12)2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33741597

RESUMEN

Rapid developments of DNA-based assembly methods provide versatile capabilities in organizing nanoparticles (NPs) in three-dimensional (3D) organized nanomaterials, which is important for optics, catalysis, mechanics, and beyond. However, the use of these nanomaterials is often limited by the narrow range of conditions in which DNA lattices are stable. We demonstrate here an approach to creating an inorganic, silica-based replica of 3D periodic DNA-NP structures with different lattice symmetries. The created ordered nanomaterials, through the precise 3D mineralization, maintain the spatial topology of connections between NPs by DNA struts and exhibit a controllable degree of the porosity. The formed silicated DNA-NP lattices exhibit excellent resiliency. They are stable when exposed to extreme temperatures (>1000°C), pressures (8 GPa), and harsh radiation conditions and can be processed by the conventional nanolithography methods. The presented approach allows the use of a DNA assembly strategy to create organized nanomaterials for a broad range of operational conditions.


Asunto(s)
Nanopartículas , Nanoestructuras , ADN/química , Nanopartículas/química , Nanoestructuras/química , Porosidad , Dióxido de Silicio
13.
Macromolecules ; 53(24): 11178-11189, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33380751

RESUMEN

We report a facile method of ordering block copolymer (BCP) morphologies in which the conventional two-step casting and annealing steps are replaced by a single-step process where microphase separation and grain coarsening are seamlessly integrated within the casting protocol. This is achieved by slowing down solvent evaporation during casting by introducing a nonvolatile solvent into the BCP casting solution that effectively prolongs the duration of the grain-growth phase. We demonstrate the utility of this solvent evaporation annealing (SEA) method by producing well-ordered large-molecular-weight BCP thin films in a total processing time shorter than 3 min without resorting to any extra laboratory equipment other than a basic casting device, i.e., spin- or blade-coater. By analyzing the morphologies of the quenched samples, we identify a relatively narrow range of polymer concentration in the wet film, just above the order-disorder concentration, to be critical for obtaining large-grained morphologies. This finding is corroborated by the analysis of the grain-growth kinetics of horizontally oriented cylindrical domains where relatively large growth exponents (1/2) are observed, indicative of a more rapid defect-annihilation mechanism in the concentrated BCP solution than in thermally annealed BCP melts. Furthermore, the analysis of temperature-resolved kinetics data allows us to calculate the Arrhenius activation energy of the grain coarsening in this one-step BCP ordering process.

14.
ACS Nano ; 14(4): 4805-4815, 2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32159943

RESUMEN

Laser annealing is a competitive alternative to conventional oven annealing of block copolymer (BCP) thin films enabling rapid acceleration and precise spatial control of the self-assembly process. Localized heating by a moving laser beam (zone annealing), taking advantage of steep temperature gradients, can additionally yield aligned morphologies. In its original implementation it was limited to specialized germanium-coated glass substrates, which absorb visible light and exhibit low-enough thermal conductivity to facilitate heating at relatively low irradiation power density. Here, we demonstrate a recent advance in laser zone annealing, which utilizes a powerful fiber-coupled near-IR laser source allowing rapid BCP annealing over a large area on conventional silicon wafers. The annealing coupled with photothermal shearing yields macroscopically aligned BCP films, which are used as templates for patterning metallic nanowires. We also report a facile method of transferring laser-annealed BCP films onto arbitrary surfaces. The transfer process allows patterning substrates with a highly corrugated surface and single-step rapid fabrication of multilayered nanomaterials with complex morphologies.

15.
Polymers (Basel) ; 11(5)2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31096596

RESUMEN

The transport properties of block copolymer-derived polymer electrolyte membranes (PEMs) are sensitive to microstructural disorder originating in the randomly oriented microdomains produced during uncontrolled self-assembly by microphase separation. This microstructural disorder can negatively impact performance due to the presence of conductivity-impeding grain boundaries and the resulting tortuosity of transport pathways. We use magnetic fields to control the orientational order of Li-doped lamellar polyethylene oxide (PEO) microdomains in a liquid crystalline diblock copolymer over large length scales (>3 mm). Microdomain alignment results in an increase in the conductivity of the membrane, but the improvement relative to non-aligned samples is modest, and limited to roughly 50% in the best cases. This limited increase is in stark contrast to the order of magnitude improvement observed for magnetically aligned cylindrical microdomains of PEO. Further, the temperature dependence of the conductivity of lamellar microdomains is seemingly insensitive to the order-disorder phase transition, again in marked contrast to the behavior of cylinder-forming materials. The data are confronted with theoretical predictions of the microstructural model developed by Sax and Ottino. The disparity between the conductivity enhancements obtained by domain alignment of cylindrical and lamellar systems is rationalized in terms of the comparative ease of percolation due to the intersection of randomly oriented lamellar domains (2D sheets) versus the quasi-1D cylindrical domains. These results have important implications for the development of methods to maximize PEM conductivity in electrochemical devices, including batteries.

16.
Nanoscale Adv ; 1(8): 2835-2839, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36133609

RESUMEN

A facile route to prepare nanotubes from rod-like mesogens dissolved in typical organic solvents is reported. For selected types of chiral rod-like molecules, nanotubes were formed from both enantiomers and racemic mixtures by slow evaporation from solution, regardless of the solvent, concentration or deposition type. The obtained supramolecular assemblies were studied using AFM, TEM and SEM techniques, and other experimental techniques (IR, UV-Vis spectroscopy and X-ray diffraction) were also applied. The difference in the surface tension at opposite crystallite surfaces is suggested as a possible mechanism for nanotube nucleation. We propose a quite new rolling-up mechanism related to the surface tension difference at opposite crystallite surfaces.

17.
Chemphyschem ; 19(19): 2566-2571, 2018 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-29893463

RESUMEN

Spontaneous formation of polarization gratings by liquid crystalline phase made of bent dimeric molecules is reported. The grating is formed within the temperature range of the twist bend modulated nematic phase, NTB , without the necessity to pattern the cell surfaces, therefore the modulated nematic phase is a promising candidate for low-cost modulators and beam steering devices, the polarization properties of which depend on temperature. In addition, the study of the diffracted light properties turns out to be a sensitive measuring technique for determination of the 3D spatial variation of the optic axis in the cell.

18.
J Colloid Interface Sci ; 515: 70-77, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29331782

RESUMEN

HYPOTHESIS: Multicomponent coatings with layers comprising different functionalities are of interest for a variety of applications, including electronic devices, energy storage, and biomaterials. Rather than creating such a film using multiple deposition steps, we explore a single-step method to create such films by varying the particle Peclet numbers, Pe. Our hypothesis, based on recent theoretical descriptions of the stratification process, is that by varying particle size and evaporation rate such that Pe of large and small particles are above and below unity, we can create stratified films of polymeric and inorganic particles. EXPERIMENTS: We present AFM on the surface composition of films comprising poly(styrene) nanoparticles (diameter 25-90 nm) and silica nanoparticles (diameter 8-14 nm). Previous studies on films containing both inorganic and polymeric particles correspond to large Pe values (e.g., 120-460), while we utilize Pe ∼ 0.3-4, enabling us to test theories that have been developed for different regimes of Pe. FINDINGS: We demonstrate evidence of stratification and effect of the Pe ratio, although our results agree only qualitatively with theory. Our results also provide validation of recent theoretical descriptions of the film drying process that predict different regimes for large-on-top and small-on-top stratification.

19.
Nanoscale ; 10(1): 416-427, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29226297

RESUMEN

While the ultimate driving force in self-assembly is energy minimization and the corresponding evolution towards equilibrium, kinetic effects can also play a very strong role. These kinetic effects, such as trapping in metastable states, slow coarsening kinetics, and pathway-dependent assembly, are often viewed as complications to be overcome. Here, we instead exploit these effects to engineer a desired final nano-structure in a block copolymer thin film, by selecting a particular ordering pathway through the self-assembly energy landscape. In particular, we combine photothermal shearing with high-temperature annealing to yield hexagonal arrays of block copolymer cylinders that are aligned in a single prescribed direction over macroscopic sample dimensions. Photothermal shearing is first used to generate a highly-aligned horizontal cylinder state, with subsequent thermal processing used to reorient the morphology to the vertical cylinder state in a templated manner. Finally, we demonstrate the successful transfer of engineered morphologies into inorganic replicas.

20.
ACS Appl Mater Interfaces ; 9(50): 44192-44198, 2017 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-29172415

RESUMEN

Fluid compartmentalization by microencapsulation is important in scenarios where protection or controlled release of encapsulated species, or isolation of chemical transformations is the central concern. Realizing responsive encapsulation systems by incorporating functional nanomaterials is of particular interest. We report here on the development of graphene oxide microcapsules enabled by a single-step microfluidic process. Interfacial reaction of epoxide-bearing graphene oxide sheets and an amine-functionalized macromolecular silicone fluid creates a chemically cross-linked film with micronscale thickness at the surface of water-in-oil droplets generated by microfluidic devices. The resulting microcapsules are monodisperse, mechanically resilient, and shape-tunable constructs. Ferrite nanoparticles are incorporated via the aqueous phase and enable microcapsule positioning by a magnetic field. We exploit the photothermal response of graphene oxide to realize microcapsules with photoresponsive release characteristics and show that the microcapsule permeability is significantly enhanced by near-IR illumination. The dual magnetic and photoresponsive characteristics, combined with the use of a single-step process employing biocompatible fluids, represent highly compelling aspects for practical applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA