Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; 29(22): e202203399, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36749107

RESUMEN

Herein, we have utilized 2-(2-hydroxyphenyl)benzimidazole (HBI) to synthesize 3-(1H-benzoimidazol-2-yl)-2-hydroxy-5-methyl-benzaldehyde (HBIA) followed by three Schiff bases by using -ortho (H2 BIo), -meta (H3 BIdm) and -para (H2 BIp) substituted amino benzoic acids and studied their photophysical properties. We have successfully derived molecular structures of HBI, HBIA and H3 BIdm which reveals that in HBI and HBIA, the phenolic -OH is intramolecularly hydrogen bonded with sp2 N of benzimidazole group whereas in H3 BIdm, it is hydrogen bonded with imine C=N of Schiff base moiety, which is responsible for different solid state emission properties of the reported compounds. Extensive experimental and theoretical studies show that for all three Schiff bases, in solution due to activation of C=N isomerization, ESIPT operates through benzimidazole site and displays different emission from the solid state. Furthermore, H2 BIo, H3 BIdm and H2 BIp selectively sense Cu2+ in semi aqueous medium with nano-molar detection limit and in HuH-7 cells through the inhibition of ESIPT of process.

2.
J Struct Biol ; 215(1): 107943, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796461

RESUMEN

The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in ß-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.


Asunto(s)
VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Membrana Celular/metabolismo , Escherichia coli , VIH-1/química , Canales Iónicos/química , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas Viroporinas/química , Proteínas Reguladoras y Accesorias Virales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA