Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Environ Sci Pollut Res Int ; 31(2): 2360-2376, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38063966

RESUMEN

The consecutive viral infectious outbreaks impose severe complications on public health besides the economic burden which led to great interest in antiviral personal protective equipment (PPE). Nanofiber-based respiratory mask has been introduced as a significant barrier to eliminate the airborne transmission from aerosols toward reduction the viral infection spreading. Herein, selenium nanoparticles incorporated in polyamide 6 nanofibers coated on spunbond nonwoven were synthesized via electrospinning technique (PA6@SeNPs), with an average diameter of 180 ± 2 nm. The nanofiber-coated media were tested for 0.3 µm particulate filtration efficiency based on Standard NIOSH (42 CFR 84). PA6@SeNPs had a pressure drop of 45 ± 2 Pa and particulate filtration efficiency of more than 97.33 which is comparable to the N95 respiratory mask. The bacterial killing efficiency of these nanofibers was 91.25% and 16.67% against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. Furthermore, the virucidal antiviral test for H1N1 infected Madin-Darby Canine Kidney cells (MDCK) exhibited TCID50 of 108.13, 105.88, and 105.5 for 2, 10, and 120 min of exposure times in comparison with 108.5, 107.5, and 106.5 in PA6 nanofibers as control sample. MTT assay indicated excellent biocompatibility of electrospun PA6@SeNP nanofibers on L292 cells. These results propose the PA6@SeNP nanofibers have a high potential to be used as an efficient layer in respiratory masks for protection against respiratory pathogens.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Nanofibras , Nanopartículas , Selenio , Virosis , Animales , Perros , Humanos , Selenio/farmacología , Nanofibras/química , Escherichia coli , Staphylococcus aureus , Antibacterianos/farmacología , Nanopartículas/química , Antivirales/farmacología
3.
Int J Biol Macromol ; 219: 290-303, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35878662

RESUMEN

Oxidation of starch is one of the most commonly used approaches to improve its properties in the thermoplastic (TP) reactions. Iron oxide nanoparticle (IONP) (8.2 ± 1.5 nm) was used as a novel catalyst for this reaction. The functional groups of the carbonyl (COH) and the carboxyl (COOH) were obtained about of 7-12.2 % and 0.03-0.3 %. TP reaction and then electrospray technique of oxidized starch were used for the thin-film coating. The swelling ratio of the gelled thermoplastic structure with IONP (198 ± 9 % at 180 min) was lower than the sample without NP (193 ± 8 % at 90 min). The results from fourier transform infrared spectroscopy (FTIR), hydrogen nuclear magnetic resonance (HNMR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) reveal desirable chemical and crystalline changes. Scanning electron microscopy (SEM) analysis was used to determine the thickness of the thin film (1.4 ± 0.2 µm) and the size of the electrosprayed droplets (172 ± 45 nm). Cytotoxicity studies of HUVEC and L929 cell lines against the extracts have shown appropriate biocompatibility. The blood compatibility analysis demonstrated proper results for (nanocomposite) NC. The results show that NC coated on metal surfaces can be used in medical approaches with drug delivery capability.


Asunto(s)
Nanopartículas , Almidón , Hidrógeno , Peróxido de Hidrógeno , Indicadores y Reactivos , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Stents , Difracción de Rayos X
4.
Life Sci ; 282: 119602, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34217765

RESUMEN

The application of electroactive scaffolds can be promising for bone tissue engineering applications. In the current paper, we aimed to fabricate an electro-conductive scaffold based on carbon nanofibers (CNFs) containing ferrous sulfate. FeSO4·7H2O salt with different concentrations 5, 10, and 15 wt%, were blended with polyacrylonitrile (PAN) polymer as the precursor and converted to Fe2O3/CNFs nanocomposite by electrospinning and heat treatment. The characterization was conducted using SEM, EDX, XRD, FTIR, and Raman methods. The results showed that the incorporation of Fe salt induces no adverse effect on the nanofibers' morphology. EDX analysis confirmed that the Fe ions are uniformly dispersed throughout the CNF mat. FTIR spectroscopy showed the interaction of Fe salt with PAN polymer. Raman spectroscopy showed that the incorporation of FeSO4·7H2O reduced the ID/IG ratio, indicating more ordered carbon in the synthesized nanocomposite. Electrical resistance measurement depicted that, although the incorporation of ferrous sulfate reduced the electrical conductivity, the conductive is suitable for electrical stimulation. The in vitro studies revealed that the prepared nanocomposites were cytocompatible and only negligible toxicity (less than 10%) induced by CNFs/Fe2O3 fabricated from PAN FeSO4·7H2O 15%. Although various nanofibrous composite fabricated with Fe NPs have been evaluated for tissue engineering applications, CNFs exhibited promising properties, such as excellent mechanical strength, biocompatibility, and electrical conductivity. These results showed that the fabricated nanocomposites could be applied as the bone tissue engineering scaffold.


Asunto(s)
Huesos/citología , Carbono/química , Compuestos Ferrosos/química , Nanofibras/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Línea Celular , Proliferación Celular , Conductividad Eléctrica , Humanos , Nanofibras/ultraestructura
5.
Mater Sci Eng C Mater Biol Appl ; 94: 445-452, 2019 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423728

RESUMEN

In this work, the anti-bacterial effect of Aloe vera derivate fibers produced by the electrospinning method was reported. Aloe vera Polyvinylpyrrolidone (Av/PVP) and Aloe vera acetate-Polyvinylpyrrolidone (AvAc/PVP) electrospun fibers were prepared with different concentrations and their microstructure and mechanical properties were studied. Various methods such as differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), water contact angle (CA) tests, Fourier-Transform Nuclear Magnetic Resonance (FT-NMR), scanning electron microscope (SEM), X-ray diffraction (XRD), CHNSO and Fourier-Transform Infrared Spectroscopy (FT-IR) were used to characterize prepared samples. (Av/PVP) electrospun fibers were prepared with different concentrations (6-10 wt%) of PVP and 0.2 wt% Av blended and tested in medicinal herb for wound healing, antibacterial and anti-inflammatory properties. For further study, the effect of AvAc film on the properties of composite film was studied. AvAc increased the thermal stability and crystallite size percentage of samples. Antibacterial and antiviral test studies on the scaffold displayed no bacterial and viral growth. These results suggest that AvAc/PVP scaffolds could be promising candidates for wound healing applications.


Asunto(s)
Acetatos/química , Aloe/química , Antibacterianos/farmacología , Ensayo de Materiales , Nanofibras/química , Acetilación , Rastreo Diferencial de Calorimetría , Pruebas de Sensibilidad Microbiana , Nanofibras/ultraestructura , Povidona/química , Polvos , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Resistencia a la Tracción , Termogravimetría , Andamios del Tejido/química
6.
Daru ; 23: 28, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903677

RESUMEN

BACKGROUND: Nanoparticles (NPs) play an important role in anticancer delivery systems. Surface modified NPs with hydrophilic polymers such as human serum albumin (HSA) have long half-life in the blood circulation system. METHODS: The method of modified nanoprecipitation was utilized for encapsulation of paclitaxel (PTX) in poly (lactic-co-glycolic acid) (PLGA). Para-maleimide benzoic hydrazide was conjugated to PLGA for the surface modifications of PLGA NPs, and then HSA was attached on the surface of prepared NPs by maleimide attachment to thiol groups (cysteines) of albumin. The application of HSA provides for the longer blood circulation of stealth NPs due to their escape from reticuloendothelial system (RES). Then the physicochemical properties of NPs like surface morphology, size, zeta potential, and in-vitro drug release were analyzed. RESULTS: The particle size of NPs ranged from 170 to 190 nm and increased about 20-30 nm after HSA conjugation. The zeta potential was about -6 mV and it decreased further after HSA conjugation. The HSA conjugation in prepared NPs was proved by Fourier transform infrared (FT-IR) spectroscopy, faster degradation of HSA in Differential scanning calorimetry (DSC) characterization, and other evidences such as the increasing in size and the decreasing in zeta potential. The PTX released in a biphasic mode for all colloidal suspensions. A sustained release profile for approximately 33 days was detected after a burst effect of the loaded drug. The in vitro cytotoxicity evaluation also indicated that the HSA NPs are more cytotoxic than plain NPs. CONCLUSIONS: HSA decoration of PLGA NPs may be a suitable method for longer blood circulation of NPs.


Asunto(s)
Antineoplásicos Fitogénicos/farmacocinética , Nanoconjugados/química , Paclitaxel/farmacocinética , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Semivida , Humanos , Ácido Láctico/química , Paclitaxel/química , Paclitaxel/farmacología , Tamaño de la Partícula , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Albúmina Sérica/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...