Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Nucleic Acids ; 35(3): 102254, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39071952

RESUMEN

Allergic contact dermatitis is a prevalent occupational disease with limited therapeutic options. The chemokine CCL22, a ligand of the chemokine receptor CCR4, directs the migration of immune cells. Here, it is shown that genetic deficiency of CCL22 effectively ameliorated allergic reactions in contact hypersensitivity (CHS), a commonly used mouse model of allergic contact dermatitis. For the pharmacological inhibition of CCL22, DNA aptamers specific for murine CCL22 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). Nine CCL22-binding aptamers were initially selected and functionally tested in vitro. The 29-nt DNA aptamer AJ102.29m profoundly inhibited CCL22-dependent T cell migration and did not elicit undesired Toll-like receptor-dependent immune activation. AJ102.29m efficiently ameliorated CHS in vivo after systemic application. Moreover, CHS-associated allergic symptoms were also reduced following topical application of the aptamer on the skin. Microscopic analysis of skin treated with AJ102.29m ex vivo demonstrated that the aptamer could penetrate into the epidermis and dermis. The finding that epicutaneous application of the aptamer AJ102.29m in a cream was as effective in suppressing the allergic reaction as intraperitoneal injection paves the way for therapeutic use of aptamers beyond the current routes of systemic administration.

2.
Mol Metab ; 85: 101963, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38821174

RESUMEN

OBJECTIVE: The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor regulating xenobiotic responses as well as physiological metabolism. Dietary AhR ligands activate the AhR signaling axis, whereas AhR activation is negatively regulated by the AhR repressor (AhRR). While AhR-deficient mice are known to be resistant to diet-induced obesity (DIO), the influence of the AhRR on DIO has not been assessed so far. METHODS: In this study, we analyzed AhRR-/- mice and mice with a conditional deletion of either AhRR or AhR in myeloid cells under conditions of DIO and after supplementation of dietary AhR ligands. Moreover, macrophage metabolism was assessed using Seahorse Mito Stress Test and ROS assays as well as transcriptomic analysis. RESULTS: We demonstrate that global AhRR deficiency leads to a robust, but not as profound protection from DIO and hepatosteatosis as AhR deficiency. Under conditions of DIO, AhRR-/- mice did not accumulate TCA cycle intermediates in the circulation in contrast to wild-type (WT) mice, indicating protection from metabolic dysfunction. This effect could be mimicked by dietary supplementation of AhR ligands in WT mice. Because of the predominant expression of the AhRR in myeloid cells, AhRR-deficient macrophages were analyzed for changes in metabolism and showed major metabolic alterations regarding oxidative phosphorylation and mitochondrial activity. Unbiased transcriptomic analysis revealed increased expression of genes involved in de novo lipogenesis and mitochondrial biogenesis. Mice with a genetic deficiency of the AhRR in myeloid cells did not show alterations in weight gain after high fat diet (HFD) but demonstrated ameliorated liver damage compared to control mice. Further, deficiency of the AhR in myeloid cells also did not affect weight gain but led to enhanced liver damage and adipose tissue fibrosis compared to controls. CONCLUSIONS: AhRR-deficient mice are resistant to diet-induced metabolic syndrome. Although conditional ablation of either the AhR or AhRR in myeloid cells did not recapitulate the phenotype of the global knockout, our findings suggest that enhanced AhR signaling in myeloid cells deficient for AhRR protects from diet-induced liver damage and fibrosis, whereas myeloid cell-specific AhR deficiency is detrimental.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Dieta Alta en Grasa , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/genética , Obesidad/metabolismo , Ratones , Dieta Alta en Grasa/efectos adversos , Masculino , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Macrófagos/metabolismo , Células Mieloides/metabolismo , Fibrosis/metabolismo , Hígado/metabolismo , Transducción de Señal
3.
J Immunol ; 206(3): 531-539, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33443066

RESUMEN

Atopic dermatitis (AD) is a severe inflammatory skin disease. Langerhans cells and inflammatory dendritic epidermal cells (IDEC) are located in the epidermis of AD patients and contribute to the inflammatory processes. Both express robustly the high-affinity receptor for IgE, FcεRI, and thereby sense allergens. A beneficial role of vitamin D3 in AD is discussed to be important especially in patients with allergic sensitization. We hypothesized that vitamin D3 impacts FcεRI expression and addressed this in human ex vivo skin, in vitro Langerhans cells, and IDEC models generated from primary human precursor cells. We show in this article that biologically active vitamin D3 [1,25(OH)2-D3] significantly downregulated FcεRI at the protein and mRNA levels of the receptor's α-chain, analyzed by flow cytometry and quantitative RT-PCR. We also describe the expression of a functional vitamin D receptor in IDEC. 1,25(OH)2-D3-mediated FcεRI reduction was direct and resulted in impaired activation of IDEC upon FcεRI engagement as monitored by CD83 expression. FcεRI regulation by 1,25(OH)2-D3 was independent of maturation and expression levels of microRNA-155 and PU.1 (as upstream regulatory axis of FcεRI) and transcription factors Elf-1 and YY1. However, 1,25(OH)2-D3 induced dissociation of PU.1 and YY1 from the FCER1A promotor, evaluated by chromatin immunoprecipitation. We show that vitamin D3 directly reduces FcεRI expression on dendritic cells by inhibiting transcription factor binding to its promotor and subsequently impairs IgE-mediated signaling. Thus, vitamin D3 as an individualized therapeutic supplement for those AD patients with allergic sensitization interferes with IgE-mediated inflammatory processes in AD patients.


Asunto(s)
Colecalciferol/metabolismo , Células Dendríticas/inmunología , Dermatitis Atópica/inmunología , Proteínas Proto-Oncogénicas/metabolismo , Receptores de IgE/metabolismo , Transactivadores/metabolismo , Factor de Transcripción YY1/metabolismo , Adulto , Anciano , Células Cultivadas , Regulación hacia Abajo , Femenino , Humanos , Inmunoglobulina E/metabolismo , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas/genética , Receptores de IgE/genética , Transducción de Señal , Transactivadores/genética , Factor de Transcripción YY1/genética , Adulto Joven
4.
Sci Rep ; 10(1): 21104, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33273595

RESUMEN

Adipose tissue is an organized endocrine organ with important metabolic and immunological functions and immune cell-adipocyte crosstalk is known to drive various disease pathologies. Suitable 3D adipose tissue organoid models often lack resident immune cell populations and therefore require the addition of immune cells isolated from other organs. We have created the first 3D adipose tissue organoid model which could contain and maintain resident immune cell populations of the stromal vascular fraction (SVF) and proved to be effective in studying adipose tissue biology in a convenient manner. Macrophage and mast cell populations were successfully confirmed within our organoid model and were maintained in culture without the addition of growth factors. We demonstrated the suitability of our model for monitoring the lipidome during adipocyte differentiation in vitro and confirmed that this model reflects the physiological lipidome better than standard 2D cultures. In addition, we applied mass spectrometry-based lipidomics to track lipidomic changes in the lipidome upon dietary and immunomodulatory interventions. We conclude that this model represents a valuable tool for immune-metabolic research.


Asunto(s)
Tejido Adiposo/citología , Organoides/citología , Organoides/inmunología , Animales , Dieta , Imagenología Tridimensional , Insulina/farmacología , Interleucina-4/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Lipidómica , Lipopolisacáridos/farmacología , Masculino , Espectrometría de Masas , Ratones Endogámicos C57BL , Organoides/efectos de los fármacos , Esferoides Celulares/citología , Esferoides Celulares/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/efectos de los fármacos
5.
Int J Mol Sci ; 21(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32366032

RESUMEN

A diet rich in vegetables and fruit is generally considered healthy because of a high content of phytochemicals, vitamins, and fiber. The phytochemical indole-3-carbinol (I3C), a derivative of glucobrassicin, is sold as a dietary supplement promising diverse health benefits. I3C metabolites act as ligands of the aryl hydrocarbon receptor (AhR), an important sensor for environmental polyaromatic chemicals. Here, we investigated how dietary AhR ligand supplementation influences AhR target gene expression and intestinal microbiota composition. For this, we used AhR repressor (AhRR)-reporter mice as a tool to study AhR activation in the intestine following dietary I3C-supplementation in comparison with AhR ligand-deprived diets, including a high fat diet. AhRR expression in intestinal immune cells was mainly driven by dietary AhR ligands and was independent of microbial metabolites. A lack of dietary AhR ligands caused enhanced susceptibility to dextran sodium sulfate (DSS)-induced colitis and correlated with the expansion of Enterobacteriaceae, whereas Clostridiales, Muribaculaceae, and Rikenellaceae were strongly reduced. I3C supplementation largely reverted this effect. Comparison of I3C-induced changes in microbiota composition using wild-type (WT), AhRR-deficient, and AhR-deficient mice revealed both AhR-dependent and -independent alterations in the microbiome. Overall, our study demonstrates that dietary AhR ligand supplementation has a profound influence on Ahrr expression in intestinal immune cells as well as microbiota composition.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Indoles/farmacología , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Sulfato de Dextran/toxicidad , Femenino , Citometría de Flujo , Indoles/uso terapéutico , Masculino , Ratones , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Hidrocarburo de Aril/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA