Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(1): 376-388, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38131318

RESUMEN

The aim of the experiment was to evaluate the biocompatibility of four 3D-printed biomaterials planned for use in the surgical treatment of finger amputees: Ti-6Al-4 V (Ti64), ZrO2-Al2O3 ceramic material (ATZ20), and osteoconductive (anodized Ti64) and antibacterial (Hydroxyapatite, HAp) coatings that adhere well to materials dedicated to finger bone implants. The work concerns the correlation of mechanical, microstructural, and biological properties of dedicated materials. Biological tests consisted of determining the overall cytotoxicity of the organism on the basis of in vivo tests carried out in accordance with the ISO 10993-6 and ISO 10993-11 standards. Clinical observations followed by diagnostic examinations, histopathological evaluation, and biochemical characterization showed no significant differences between control and tested groups of animals. The wound healed without complication, and no pathological effects were found. The wear test showed the fragility of the hydroxyapatite thin layer and the mechanical stability of the zirconia-based ceramic substrate. Electron microscopy observations revealed the layered structure of tested substrates and coatings.


Asunto(s)
Materiales Biocompatibles , Prótesis e Implantes , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Durapatita/farmacología , Cerámica/farmacología , Titanio/farmacología , Titanio/química , Aleaciones/farmacología , Aleaciones/química , Propiedades de Superficie , Ensayo de Materiales
2.
Acta Bioeng Biomech ; 25(1): 3-17, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38314559

RESUMEN

PURPOSE: The research was focused on determining basic mechanical properties, surface, and phase structure taking into consideration basic cytotoxicity analysis towards human cells. METHODS: Biological tests were performed on human C-12302 fibroblasts cells using 3D-printed Ti6Al4V alloy (Ti64), produced by laser-based powder bed fusion (LB-PBF) and Alumina Toughened Zirconia 20 (ATZ20), produced by lithography-based ceramic manufacturing (LCM). Surface modifications included electropolishing and hydroxyapatite or hydroxyapatite/zinc coating. Structure analysis was carried out using a variety of techniques such as X-Ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM), followed by mechanical properties evaluation using nanoindentation testing. RESULTS: Samples subjected to surface modifications showed diversity among surface and phase structure and mechanical properties. However, the cytotoxicity towards tested cells was not significantly higher than the control. Though, a trend was noted among the materials analysed, indicating that HAp/Zn coating on Ti64 and ATZ20 resulted in the best biological performance increasing cell survivability by more than 10%. CONCLUSIONS: Hydroxyapatite coating on Ti64 and ATZ20 resulted in the best biological properties. Tested materials are suitable for in vivo toxicity testin.


Asunto(s)
Materiales Biocompatibles , Durapatita , Humanos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ensayo de Materiales , Durapatita/farmacología , Durapatita/química , Prótesis e Implantes , Propiedades de Superficie
3.
ACS Omega ; 7(43): 39234-39249, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36340063

RESUMEN

Surface properties are crucial for medical device and implant research and applications. We present novel polycatecholamine coatings obtained by oxidative polymerization of l-tyrosine, l-phenylalanine, and 2-phenylethylamine based on mussel glue-inspired chemistry. We optimized the reaction parameters and examined the properties of coatings compared to the ones obtained from polydopamine. We produced polycatecholamine coatings on various materials used to manufacture implantable medical devices, such as polyurethane, but also hard-to-coat polydimethylsiloxane, polytetrafluoroethylene, and stainless steel. The coating process results in significant hydrophilization of the material's surface, reducing the water contact angle by about 50 to 80% for polytetrafluoroethylene and polyurethane, respectively. We showed that the thickness, roughness, and stability of the polycatecholamine coatings depend on the chemical structure of the oxidized phenylamine. In vitro experiments showed prominent hemocompatibility of our coatings and significant improvement of the adhesion and proliferation of human umbilical vein endothelial cells. The full confluence on the surface of coated polytetrafluoroethylene was achieved after 5 days of cell culture for all tested polycatecholamines, and it was maintained after 14 days. Hence, the use of polycatecholamine coatings can be a simple and versatile method of surface modification of medical devices intended for contact with blood or used in tissue engineering.

4.
Colloids Surf B Biointerfaces ; 220: 112943, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36274400

RESUMEN

The research was focused on alternative treatment techniques, separating immediate and long-term reconstruction stages. The work involved development of ceramic materials dedicated to reconstruction of the temporomandibular joint area. They were based on alumina (aluminum oxide) and characterized by varying porosities. A broad spectrum of studies was conducted to test the proposed material and determine its suitability for mandibular reconstruction. They compared the effects of substrate properties of ceramic materials in terms of biocompatibility, microbiology and systemic toxicity in in vivo studies. Finally it was concluded that Alumina LithaLox 350D is best suited for jawbone implants.


Asunto(s)
Cerámica , Neoplasias , Humanos , Cerámica/química , Óxido de Aluminio/farmacología , Óxido de Aluminio/química , Huesos , Antibacterianos , Ensayo de Materiales
5.
Molecules ; 27(17)2022 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-36080463

RESUMEN

The aim of this study was to minimize the risk of life-threatening thromboembolism in the ventricle through the use of a new biomimetic heart valve based on metal-polymer composites. Finite volume element simulations of blood adhesion to the material were carried out, encompassing radial flow and the cone and plane test together with determination of the effect of boundary conditions. Both tilt-disc and bicuspid valves do not have optimized blood flow due to their design based on rigid valve materials (leaflet made of pyrolytic carbon). The main objective was the development of materials with specific properties dedicated to contact with blood. Materials were evaluated by dynamic tests using blood, concentrates, and whole human blood. Hemostability tests under hydrodynamic conditions were related to the mechanical properties of thin-film materials obtained from tribological tests. The quality of the coatings was high enough to avoid damage to the coating even as they were exposed up to maximum loading. Analysis towards blood concentrates of the hydrogenated carbon sample and the nitrogen-doped hydrogenated carbon sample revealed that the interaction of the coating with erythrocytes was the strongest. Hemocompatibility evaluation under hydrodynamic conditions confirmed very good properties of the developed coatings.


Asunto(s)
Prótesis Valvulares Cardíacas , Carbono , Humanos , Hidrodinámica , Nitrógeno
6.
Biomater Sci ; 10(19): 5498-5503, 2022 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-35904349

RESUMEN

The blood compatibility of self-assembled monolayers (SAMs) of oligoproline, a nonionic antifouling peptide, was investigated using the cone-and-plate assay imitating arterial blood flow conditions. End-capped oligoprolines composed of 6 and 9 proline residues (Pro6 and Pro9) and a Cys residue were synthesized for preparing SAMs (Pro-SAMs) on Au-sputtered glass. The surface of Pro-SAMs indicated hydrophilic property with a smooth topology. The adsorption of blood components and the adhesion of blood cells, including leukocytes and platelets, were strongly suppressed on Pro-SAMs. Moreover, Pro9-SAM did not trigger the activation of platelets (i.e., the conformational change of GPIIb/IIIa and P-selectin (CD62P) expression on platelets and the formation of aggregates). Our results demonstrate that Pro9-SAM completely inhibited acute thrombogenic responses and the activation of platelets under dynamic conditions.


Asunto(s)
Plaquetas , Selectina-P , Adsorción , Prolina , Propiedades de Superficie
7.
Materials (Basel) ; 15(7)2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35407927

RESUMEN

The goal of this work was to create a bioactive tissue-based scaffold using multi-disciplinary engineering materials and tissue engineering techniques. Materials & methods: Physical techniques such as direct laser interference lithography and proton radiation were selected as alternative methods of enzymatic and chemical decellularization to remove cells from a tissue without degradation of the extracellular matrix nor its protein structure. This study was an attempt to prepare a functional scaffold for cell culture from tissue of animal origin using new physical methods that have not been considered before. The work was carried out under full control of the histological and molecular analysis. Results & conclusions: The most important finding was that the physical methods used to obtain the decellularized tissue scaffold differed in the efficiency of cell removal from the tissue in favour of the laser method. Both the laser method and the proton method exhibited a destructive effect on tissue structure and the genetic material in cell nuclei. This effect was visible on histology images as blurred areas within the cell nucleus. The finite element 3D simulation of decellularization process of the three-layer tissue of animal origin sample reflected well the mechanical response of tissue described by hyperelastic material models and provided results comparable to the experimental ones.

8.
Materials (Basel) ; 16(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36614378

RESUMEN

Biomaterials used in cardiosurgical implants and artificial valves that have long-term contact with blood pose a great challenge for researchers due to the induction of thrombogenicity. So far, the assessment of the thrombogenicity of biomaterials has been performed with the use of highly subjective descriptive methods, which has made it impossible to compare the results of various experiments. The aim of this paper was to present a new semi-quantitative method of thrombogenicity assessment based on scanning electron microscope (SEM) images of an adhered biological material deposited on the surfaces of prepared samples. The following biomaterials were used to develop the proposed method: Bionate 55D polyurethane, polyether-ether ketone, Ti6Al7Nb alloy, sintered yttria-stabilized zirconium oxide (ZrO2 + Y2O3), collagen-coated glass, and bacterial cellulose. The samples were prepared by incubating the biomaterials with platelet-rich plasma. In order to quantify the thrombogenic properties of the biomaterials, a TR parameter based on the fractal dimension was applied. The obtained results confirmed that the use of the fractal dimension enables the quantitative assessment of thrombogenicity and the proper qualification of samples in line with an expert's judgment. The polyurethanes showed the best thrombogenic properties of the tested samples: Bionate 55D (TR = 0.051) and PET-DLA 65% (average TR = 0.711). The ceramics showed the worst thrombogenic properties (TR = 1.846). All the tested materials were much less thrombogenic than the positive control (TR = 5.639).

9.
Acta Bioeng Biomech ; 24(3): 119-133, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38314475

RESUMEN

PURPOSE: The present paper covers simulation of blood flow in a roughness impact-R test model to anticipate the hemodynamic conditions of adhesion of blood elements to the modified surface. It was performed using numerical modelling of this process. The aim of these simulations was to create a surface morphology that stimulates the adhesion of blood elements to the surface of base plate of impact-R test. METHODS: The morphology of base plate of impact-R test was developed using a vacuum powder sintering of commercial purity titanium powder (CP-Ti) on Ti6Al7Nb substrate. The finite volume method (FVM) and disperse particle method (DPM) were applied to develop the target model of a roughness impact-R test. The morphology of modified surfaces was documented with digital microscope and SEM (scanning electron microscopy). RESULTS: The impact-R test developed using the two-phase blood model performed on regularly structured base plate resulted in shear stress values higher than the analogous for the model lacking such modification. The most significant reduction in maximum values of shear stress occurred in case of the DPM model and especially in the model with regular structures. CONCLUSIONS: The proposed models are very effective in modeling of the analysis of blood flow in roughness impact-R test.

10.
Acta Bioeng Biomech ; 24(1): 131-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-38314485

RESUMEN

PURPOSE: The goal of the present study was the development of discrete phase model to simulate the phenomenon of backfilling a morphologically complex surface by red blood cells (RBCs) in a flow microchannel and to anticipate the conditions of forming a pseudointima. The objective of the experimental studies that inspired the development of the simulation was to create a surface that stimulates the formation of the pseudointima layer. METHODS: The finite volume method (FVM) and discrete particle method (DPM) were applied to develop the target model. In addition, a mixture model and a roughness model of bottom layer were tested in the present study to show their influence on simulation the phenomenon of backfilling a morphologically complex surface by RBCs in a flow microchannel. RESULTS: Numerical models were developed including: a) FVM models to compare the effect of applying boundary conditions with/without roughness and cubes, as well as the analysis of their influence on blood velocity and shear stress; b) mixture models to compare the effect of applying different boundary conditions and cubes on computed results; c) DPM models to compare the effect of applying and not applying roughness as a boundary condition; d) DPM models with a morphologically complex surface and RBCs collisions to present RBCs concentration, velocity and time distributions during flow in a channel. CONCLUSIONS: The analysis carried out for the developed numerical models indicates that DPM model with cubes computes the best results. It also shows the backfilling of a morphologically complex surface of the bottom microchannel with RBCs.

11.
J Mater Sci Mater Med ; 32(9): 118, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34459990

RESUMEN

This paper presents the results of biocompatibility testing performed on several biomaterial variants for manufacturing a newly designed petal valve intended for use in a pulsatile ventricular assist device or blood pump. Both physical vapor deposition (PVD) and plasma-enhanced chemical vapor deposition (PECVD) were used to coat titanium-based substrates with hydrogenated tetrahedral amorphous carbon (ta-C:H) or amorphous hydrogenated carbon (a-C:H and a-C:H, N). Experiments were carried out using whole human blood under arterial shear stress conditions in a cone-plate analyzer (ap. 1800 1/s). In most cases, tested coatings showed good or very good haemocompatibility. Type a-C:H, N coating proved to be superior in terms of activation, risk of aggregation, and the effects of generating microparticles of apoptotic origin, and also demonstrated excellent mechanical properties. Therefore, a-C:H, N coatings were selected for further in vivo studies. In vivo animal studies were carried out according to the ISO 10993 standard. Intradermal reactivity was assessed in three rabbits and sub-acute toxicity and local effects after implantation were examined in 12 rabbits. Based on postmortem examination, no organ failure or wound tissue damage occurred during the required period of observation. In summary, our investigations demonstrated high biocompatibility of the biomaterials in relation to thrombogenicity, toxicity, and wound healing. Prototypes of the petal valves were manufactured and mounted on the pulsatile ventricular assist device. Hydrodynamic features and impact on red blood cells (hemolysis) as well as coagulation (systemic thrombogenicity) were assessed in whole blood.


Asunto(s)
Materiales Biocompatibles , Corazón Auxiliar , Hidrodinámica , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Carbono/química , Carbono/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/fisiología , Hemólisis/efectos de los fármacos , Humanos , Masculino , Ensayo de Materiales , Diseño de Prótesis , Flujo Pulsátil/fisiología , Conejos , Estrés Mecánico , Propiedades de Superficie , Titanio/química , Titanio/farmacología
12.
Molecules ; 26(11)2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34074062

RESUMEN

The goal of the work was to develop materials dedicated to spine surgery that minimized the potential for infection originating from the transfer of bacteria during long surgeries. The bacteria form biofilms, causing implant loosening, pain and finally, a risk of paralysis for patients. Our strategy focused both on improvement of antibacterial properties against bacteria adhesion and on wear and corrosion resistance of tools for spine surgery. Further, a ~35% decrease in implant and tool dimensions was expected by introducing ultrahigh-strength titanium alloys for less-invasive surgeries. The tested materials, in the form of thin, multi-layered coatings, showed nanocrystalline microstructures. Performed direct-cytotoxicity studies (including lactate dehydrogenase activity measurement) showed that there was a low probability of adverse effects on surrounding SAOS-2 (Homo sapiens bone osteosarcoma) cells. The microbiological studies (e.g., ISO 22196 contact tests) showed that implanting Ag nanoparticles into Ti/TixN coatings inhibited the growth of E. coli and S. aureus cells and reduced their adhesion to the material surface. These findings suggest that Ag-nanoparticles present in implant coatings may potentially minimize infection risk and lower inherent stress.


Asunto(s)
Aleaciones/farmacología , Antibacterianos/farmacología , Prótesis e Implantes , Columna Vertebral/cirugía , Titanio/farmacología , Humanos
13.
Colloids Surf B Biointerfaces ; 201: 111624, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33621749

RESUMEN

The main purpose of the work was to develop a drug releasing coatings on the surface of medical devices exposed to blood flow, what should enable effective inhibition of blood coagulation process. As a part of the work, the process of encapsulating the anticoagulant drug eptifibatide (EPT) in poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles was developed. EPT encapsulation efficiency was 29.1 ± 2.1%, while the EPT loading percentage in the nanoparticles was 4.2 ± 0.3%. The PLGA nanoparticles were suspended in a polyanion solution (hyaluronic acid (HA)) and deposited on the surface-treated thermoplastic polyurethane (TPU) by a layer-by-layer method. As a polycation poly-L-lysine (PLL) was used. The influence of released EPT on the activation of the coagulation system was analyzed using dynamic blood tester. Performed experiments show an effective delivery of the drug to the bloodstream and low risk of platelets (membrane receptor) activation. The dynamic blood test process, including its physical phenomenon, was described using numerical methods, i.e. a finite volume cone-and-plate test model as well as non-Newtonian blood models. The values of shear stress and blood flow velocity under the fast-rotating cone were computed applying boundary conditions of cylinder wall imitating blood-nanomaterial interaction. Implementing boundary conditions as initial shear stress values of bottom cylinder wall resulted in the increase of shear stress in blood under rotating cone. The developed system combining drug eluting polymeric nanoparticles with the polyelectrolyte "layer-by-layer" coating can be easily introduced to medical implants of various shape, with the advantages of resorbable drug carriers allowing for local and controllable delivery of anti-thrombogenic drugs.


Asunto(s)
Nanopartículas , Ácido Poliglicólico , Coagulación Sanguínea , Portadores de Fármacos , Eptifibatida , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliuretanos
14.
Colloids Surf B Biointerfaces ; 199: 111562, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33434879

RESUMEN

The main purpose of the work was to assess the haemocompatible properties of polyurethane discs with a modified surface dedicated to cardiovascular system regeneration. They were coated with acrylic acid-based material to inhibit the activation of the blood coagulation cascade. This coating improved the wettability of the material, leading to the prevention of protein adsorption on the surface. The blood-material interaction was analyzed in dynamic conditions with a specially designed tester, which helps to control blood-material interaction under high shear stress conditions. The corresponding numerical model of the tester was also developed by finite volume method (FVM). The 3D FVM model allows the determination of shear stresses applying different flow and boundary conditions representing blood-material interactions. The haemocompatibility analyses were performed through in vitro tests using a blood flow simulator. They revealed a low probability of activation of blood coagulation and low leukocyte activation. The original mechanical set-up to test the blood-material interaction helped to prove that acrylic acid-based coatings expressed good haemocompatible properties.


Asunto(s)
Acrilatos , Poliuretanos , Ensayo de Materiales , Estrés Mecánico , Propiedades de Superficie , Humectabilidad
15.
Polymers (Basel) ; 12(12)2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33333728

RESUMEN

Minimizing of the life-threatening thrombo-emboli formation in pulsatile heart assist devices by a new biomimetic heart valve design is presently one of the most important problems in medicine. As part of this work, an original valve structure was proposed intended for pneumatic, extracorporeal ventricular assist devices. The valve design allows for direct integration with other parts of the pulsating blood pump. Strengthening in the form of the titanium or steel frame has been introduced into the polyurethane lagging, which allows for maintaining material continuity and eliminating the risk of blood clotting. The prototype of the valve was made by the injection molding method assisted by numerical simulation of this process. The prototype was introduced into a modified pulsating, extracorporeal heart assist pump ReligaHeart EXT (developed for tilting disc valves) and examined in-vitro using the "artificial patient" model in order to determine hydrodynamic properties of the valve in the environment similar to physiological conditions. Fundamental blood tests, like hemolysis and thrombogenicity have been carried out. Very low backflow through the closed valve was observed despite their slight distortion due to pressure. On the basis of immunofluorescence tests, only slight activation of platelets was found on the inlet valve and slight increased risk of clotting of the outlet valve commissures as a result of poor valve leaflets assembling in the prototype device. No blood hemolysis was observed. Few of the clots formed only in places where the valve surfaces were not smooth enough.

16.
Nanomaterials (Basel) ; 10(5)2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-32365586

RESUMEN

Surface functionalization of materials to improve their hemocompatibility is a challenging problem in the field of blood-contacting devices and implants. Polyelectrolyte multilayer films (PEMs), which can mimic functions and structure of an extracellular matrix (ECM), are a promising solution to the urgent need for functional blood-contacting coatings. The properties of PEMs can be easily tuned in order to provide a scaffold with desired physico-chemical parameters. In this study chitosan/chondroitin sulfate (Chi/CS) polyelectrolyte multilayers were deposited on medical polyurethane. Afterwards PEMs were modified by chemical cross-linking and nanoparticles introduction. Coatings with variable properties were tested for their hemocompatibility in the cone-plate tester under dynamic conditions. The obtained results enable the understanding of how substrate properties modulate PEMs interaction with blood plasma proteins and the morphotic elements.

17.
Colloids Surf B Biointerfaces ; 193: 111056, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32403035

RESUMEN

In case of benign and malignant tumours affecting the maxillofacial region, the resection of jawbone reflects the standard therapy in more than 5.000 cases per year within the European Union. The resulting large bone defects lead to scarred, mangled facial appearance, loss of mastication and probably speech, requiring aesthetic and functional surgery as a basis for physical and physiological rehabilitation. Although autologous vascularized bone autografts reflect the current golden standard, the portion of bone available for the procedure is limited and subsequent high-dose anti-cancer chemo-/radiotherapy can lead to local tissue necrosis. Autologous vascularized bone from fibular or iliac-crest autografts is current golden standard in jawbone resection post-treatment, however, the portion of transplantable bone is limited and subsequent high-dose anti-cancer chemo-/radiotherapy often results in tissue necrosis Our research focuses on alternative treatment techniques: tissue reconstruction via novel patient-specifically manufactured maxillofacial implant that stimulates bone tissue growth. The planned neoformation of vascularized bone in such implants within the patient's own body as "bioreactor" is the safest approach in tissue engineering. The works described herein included the design of the metallic substrate of the implant with the use of computed tomography basing on real patients scans and then 3D-printing the substrates from the Ti6Al7Nb powder. The metal core was then evaluated in terms of structural characteristic, cytotoxicity and gene expression through the in vitro tests. Further experiments were focused on fabrication of the biocompatible coating for outer surface of the bone implant that would enhance the healing process and accelerate the tissue growth. Functional polymeric granulate dedicated for osteoconductive, osteoinductive and osteogenesis properties were elaborated. Another approach including the coating for the implant surface with two-phase biocompatible layer including polymeric microspheres and hydrogel carrier, which would provide long-time release of bone and cartilage growth factors around the implant were also done. The polymeric granulate containing ßTCP improved bone cells growth, but it some modification has to be done in order to improve structural pores to ensure for better osteoconductivity. The biocompatible coating including PVP hydrogel and polymeric microspheres is still in the development process.


Asunto(s)
Regeneración Ósea , Trasplante Óseo , Materiales Biocompatibles Revestidos/química , Neoplasias Maxilomandibulares/cirugía , Prótesis e Implantes , Animales , Línea Celular , Humanos , Ratones , Tamaño de la Partícula , Propiedades de Superficie , Ingeniería de Tejidos
18.
Acta Bioeng Biomech ; 22(1): 67-77, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32307460

RESUMEN

PURPOSE: The aim of the work was to create an appropriate substrate for organ transplantation using bioactive tissue-based scaffold populated by cells of the graft recipient. The purpose of the modeling was to investigate the mechanical effects of wave loading of aortic and pulmonary tissue material. METHODS: The biological properties of tissues of aortic and pulmonary valves were modified by the process of decellularization. The host cells were removed by various physical methods with focus on minimal degradation of the extracellular matrix. Thus, the decellularization process was controlled by histological methods. The tissue decellularization process was simulated by finite element modelling. RESULTS: The mechanical results represented by a displacement at the center of the sample were coherent and the heterogeneity of the distribution of the caves on the surface of the samples was confirmed, both by experiment and in the simulation by the alternate occurrence of local minima and maxima. The latter results from the uneven removal of cells from the effect of the wave causing decellularization were also predicted by the numerical model. Laser radiation had a destructive effect on the components of the extracellular matrix (e.g., collagen and elastic fibers), mainly depending on the fluence and number of pulses in a single exposure. CONCLUSIONS: The differences between the valve tissue materials were shown, and the impact of the process of decellularization on the properties of the tissues was analyzed. It should be emphasized that due to low absorption and high scattering, laser radiation can deeply penetrate the tissue, which allows for effective decellularization process in the entire volume of irradiated tissue.


Asunto(s)
Rayos Láser , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Aorta/fisiología , Válvula Aórtica/fisiología , Núcleo Celular/metabolismo , Técnica del Anticuerpo Fluorescente , Indoles , Arteria Pulmonar/fisiología , Válvula Pulmonar/fisiología , Estrés Mecánico , Porcinos
19.
ACS Biomater Sci Eng ; 6(2): 898-911, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33464848

RESUMEN

The process of modern cardiovascular device fabrication should always be associated with an investigation of how surface properties modulate its hemocompatibility through plasma protein adsorption as well as blood morphotic element activation and adhesion. In this work, a package of novel assays was used to correlate the physicochemical properties of thin ceramic coatings with hemocompatibility under dynamic conditions. Different variants of carbon-based films were prepared on polymer substrates using the magnetron sputtering method. The microstructural, mechanical, and surface physicochemical tests were performed to characterize the coatings, followed by investigation of whole human blood quality changes under blood flow conditions using the "Impact R" test, tubes' tester, and radial flow chamber assay. The applied methodology allowed us to determine that aggregate formation on hydrophobic and hydrophilic carbon-based coatings may follow one of the two different mechanisms dependent on the type and conformational changes of adsorbed blood plasma proteins.


Asunto(s)
Plaquetas , Materiales Biocompatibles Revestidos , Cerámica , Humanos , Ensayo de Materiales , Propiedades de Superficie
20.
Mater Sci Eng C Mater Biol Appl ; 93: 134-144, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30274046

RESUMEN

Lecithin is a mixture of phospholipids (PLs) that are found in living organisms. It gained the interest as a bio- and hemocompatible modifying agent for biomaterials. In this paper, we focused on the elaboration of a simple and well-described technology of metals coating with low-cost substance that could be useful in biomaterials industry. We studied the utility of lecithin suspension for stainless steel coating by electrophoretic deposition method. Our goal was to find a relationship between the conditions of lecithin suspension preparation, obtained suspension properties (vesicles size and structure, zeta potential, electrophoretic mobility) and lecithin coating features (topography, roughness). We found that final pH value, zeta potential and electrophoretic mobility of lecithin suspensions were not altered by initial solution pH value. However, the presence of hydrated Na+ ions forced forming of large multi-layered vesicles. We obtained uniform lecithin coatings with the use of electrophoretic deposition, which has a great potential to be used in a large scale.


Asunto(s)
Materiales Biocompatibles Revestidos/química , Electroforesis/métodos , Lecitinas/química , Acero Inoxidable/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...