Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 88(7): 953-967, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37751866

RESUMEN

Fluorescent dyes are widely used in histological studies and in intraoperative imaging, including surgical treatment of prostate cancer (PC), which is one of the most common types of cancerous tumors among men today. Targeted delivery of fluorescent conjugates greatly improves diagnostic efficiency and allows for timely correct diagnosis. In the case of PC, the protein marker is a prostate-specific membrane antigen (PSMA). To date, a large number of diagnostic conjugates targeting PSMA have been created based on modified urea. The review focuses on the conjugates selectively binding to PSMA and answers the following questions: What fluorescent dyes are already in use in the field of PC diagnosis? What factors influence the structure-activity ratio of the final molecule? What features should be considered when selecting a fluorescent tag to create new diagnostic conjugates? And what could be suggested to further development in this field at the present time?


Asunto(s)
Colorantes Fluorescentes , Neoplasias de la Próstata , Masculino , Humanos , Próstata , Neoplasias de la Próstata/diagnóstico por imagen , Ligandos , Proyectos de Investigación
2.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569582

RESUMEN

Prostate-specific membrane antigen (PSMA) has been identified as a target for the development of theranostic agents. In our current work, we describe the design and synthesis of novel N-[N-[(S)-1,3-dicarboxypropyl]carbamoyl]-(S)-L-lysine (DCL) urea-based PSMA inhibitors with a chlorine-substituted aromatic fragment at the lysine ε-nitrogen atom, a dipeptide including two phenylalanine residues in the L-configuration as the peptide fragment of the linker, and 3- or 4-(tributylstannyl)benzoic acid as a prosthetic group in their structures for radiolabeling. The standard compounds [127I]PSMA-m-IB and [127I]PSMA-p-IB for comparative and characterization studies were first synthesized using two alternative synthetic approaches. An important advantage of the alternative synthetic approach, in which the prosthetic group (NHS-activated esters of compounds) is first conjugated with the polypeptide sequence followed by replacement of the Sn(Bu)3 group with radioiodine, is that the radionuclide is introduced in the final step of synthesis, thereby minimizing operating time with iodine-123 during the radiolabeling process. The obtained DCL urea-based PSMA inhibitors were radiolabeled with iodine-123. The radiolabeling optimization results showed that the radiochemical yield of [123I]PSMA-p-IB was higher than that of [123I]PSMA-m-IB, which were 74.9 ± 1.0% and 49.4 ± 1.2%, respectively. The radiochemical purity of [123I]PSMA-p-IB after purification was greater than 99.50%. The initial preclinical evaluation of [123I]PSMA-p-IB demonstrated a considerable affinity and specific binding to PC-3 PIP (PSMA-expressing cells) in vitro. The in vivo biodistribution of this new radioligand [123I]PSMA-p-IB showed less accumulation than [177Lu]Lu-PSMA-617 in several normal organs (liver, kidney, and bone). These results warrant further preclinical development, including toxicology evaluation and experiments in tumor-bearing mice.


Asunto(s)
Radioisótopos de Yodo , Neoplasias de la Próstata , Humanos , Masculino , Animales , Ratones , Urea/farmacología , Distribución Tisular , Neoplasias de la Próstata/metabolismo , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Radiofármacos/química , Línea Celular Tumoral
3.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511087

RESUMEN

Prostate cancer is the second most common cancer among men. We designed and synthesized new ligands targeting prostate-specific membrane antigen and suitable for bimodal conjugates with diagnostic and therapeutic agents. In vitro studies of the affinity of the synthesized compounds to the protein target have been carried out. Based on these ligands, a series of bimodal conjugates with a combination of different mitosis inhibitors and antiandrogenic drugs were synthesized. The cytotoxicity of the compounds obtained in vitro was investigated on three different cell lines. The efficacy of the two obtained conjugates was evaluated in vivo in xenograft models of prostate cancer. These compounds have been shown to be highly effective in inhibiting the growth of PSMA-expressing tumors.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata , Masculino , Humanos , Antagonistas de Andrógenos/uso terapéutico , Citotoxinas/uso terapéutico , Próstata/patología , Ligandos , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Antígenos de Superficie/metabolismo , Neoplasias de la Próstata/metabolismo
4.
Nanomaterials (Basel) ; 13(5)2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36903693

RESUMEN

Nowadays, magnetoelectric nanomaterials are on their way to finding wide applications in biomedicine for various cancer and neurological disease treatment, which is mainly restricted by their relatively high toxicity and complex synthesis. This study for the first time reports novel magnetoelectric nanocomposites of CoxFe3-xO4-BaTiO3 series with tuned magnetic phase structures, which were synthesized via a two-step chemical approach in polyol media. The magnetic CoxFe3-xO4 phases with x = 0.0, 0.5, and 1.0 were obtained by thermal decomposition in triethylene glycol media. The magnetoelectric nanocomposites were synthesized by the decomposition of barium titanate precursors in the presence of a magnetic phase under solvothermal conditions and subsequent annealing at 700 °C. X-ray diffraction revealed the presence of both spinel and perovskite phases after annealing with average crystallite sizes in the range of 9.0-14.5 nm. Transmission electron microscopy data showed two-phase composite nanostructures consisting of ferrites and barium titanate. The presence of interfacial connections between magnetic and ferroelectric phases was confirmed by high-resolution transmission electron microscopy. Magnetization data showed expected ferrimagnetic behavior and σs decrease after the nanocomposite formation. Magnetoelectric coefficient measurements after the annealing showed non-linear change with a maximum of 89 mV/cm*Oe with x = 0.5, 74 mV/cm*Oe with x = 0, and a minimum of 50 mV/cm*Oe with x = 0.0 core composition, that corresponds with the coercive force of the nanocomposites: 240 Oe, 89 Oe and 36 Oe, respectively. The obtained nanocomposites show low toxicity in the whole studied concentration range of 25-400 µg/mL on CT-26 cancer cells. The synthesized nanocomposites show low cytotoxicity and high magnetoelectric effects, therefore they can find wide applications in biomedicine.

5.
Molecules ; 28(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770991

RESUMEN

Novel variously substituted thiohydantoin-based dispiro-indolinones were prepared using a regio- and diastereoselective synthetic route from 5-arylidene-2-thiohydantoins, isatines, and sarcosine. The obtained molecules were subsequently evaluated in vitro against the cancer cell lines LNCaP, PC3, HCTwt, and HCT(-/-). Several compounds demonstrated a relatively high cytotoxic activity vs. LNCaP cells (IC50 = 1.2-3.5 µM) and a reasonable selectivity index (SI = 3-10). Confocal microscopy revealed that the conjugate of propargyl-substituted dispiro-indolinone with the fluorescent dye Sulfo-Cy5-azide was mainly localized in the cytoplasm of HEK293 cells. P388-inoculated mice and HCT116-xenograft BALB/c nude mice were used to evaluate the anticancer activity of compound 29 in vivo. Particularly, the TGRI value for the P388 model was 93% at the final control timepoint. No mortality was registered among the population up to day 31 of the study. In the HCT116 xenograft model, the compound (170 mg/kg, i.p., o.d., 10 days) provided a T/C ratio close to 60% on day 8 after the treatment was completed. The therapeutic index-estimated as LD50/ED50-for compound 29 in mice was ≥2.5. Molecular docking studies were carried out to predict the possible binding modes of the examined molecules towards MDM2 as the feasible biological target. However, such a mechanism was not confirmed by Western blot data and, apparently, the synthesized compounds have a different mechanism of cytotoxic action.


Asunto(s)
Antineoplásicos , Humanos , Animales , Ratones , Relación Estructura-Actividad , Oxindoles/farmacología , Simulación del Acoplamiento Molecular , Ratones Desnudos , Células HEK293 , Antineoplásicos/química , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular
6.
RSC Med Chem ; 14(1): 56-64, 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36760736

RESUMEN

Statins are effective 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R) inhibitors, which are successfully used for cardiovascular disease treatment. Statins' side effects are generally attributed to poor bioavailability and hepatoselectivity, which are closely related to their high lipophilicity. Targeted delivery of statins to the liver is considered as a way to reduce unwanted side effects. Herein we report on synthesis and evaluation of atorvastatin conjugates targeting the galactose-specific hepatic asialoglycoprotein receptor (ASGPR). The prepared conjugates showed greater water solubility compared to unmodified atorvastatin. The synthesised compounds demonstrated potent binding to the ASGPR with submicromolar K D values. The conjugates with an amide bond connecting atorvastatin and the targeting moiety displayed the optimal stability under model conditions, as they underwent hydrolysis only when incubated with the intracellular protease. The hydrolysis products effectively inhibited HMG-R activity. The results suggest that the designed amide-based compounds have the potential to be further developed as orally administered prodrugs of atorvastatin.

7.
ACS Appl Mater Interfaces ; 15(10): 12882-12894, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36854172

RESUMEN

Controlled photoreduction of Pt(IV) prodrugs is a challenging task due to the possibility of targeted light-controlled activation of anticancer agents without affecting healthy tissues. Also, a conjugation of photosensitizers and clinically used platinum drugs into one Pt(IV) prodrug allows combining photodynamic therapy and chemotherapy approaches into one molecule. Herein, we designed the cisplatin-based Pt(IV) prodrug Riboplatin with tetraacetylriboflavin in the axial position. A novel Pt(IV) prodrug is able to act both as a photodynamic therapy (PDT) agent through the conversion of ground-state 3O2 to excited-state 1O2 and as an agent of photoactivated chemotherapy (PACT) through releasing of cisplatin under gentle blue light irradiation, without the requirement of a reducing agent. The light-induced behavior of Riboplatin was investigated using an electrochemical sensor in MCF-7 tumor spheroids. Photocontrolled cisplatin release and ROS generation were detected electrochemically in real time. This appears to be the first confirmation of simultaneous photoactivated release of anticancer drug cisplatin and ROS from a dual-action Pt(IV) prodrug observed from the inside of living tumor spheroids.


Asunto(s)
Antineoplásicos , Profármacos , Cisplatino/farmacología , Cisplatino/química , Profármacos/farmacología , Profármacos/química , Especies Reactivas de Oxígeno , Antineoplásicos/farmacología , Antineoplásicos/química , Platino (Metal)/química , Línea Celular Tumoral
8.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557929

RESUMEN

Prostate cancer is the second most common type of cancer among men. The main method of its treatment is androgen deprivation therapy, which has a wide range of side effects. One of the solutions to this challenge is the targeted delivery of drugs to prostate cancer cells. In this study, we performed the synthesis of a novel small-molecule PSMA-targeted conjugate based on abiraterone. Cytotoxicity, the induction of intracellular reactive oxygen species, and P450-cytochrome species inhibition were investigated for this conjugate PSMA-abiraterone. The conjugate demonstrated a preferential effect on prostate tumor cells, remaining inactive at up to 100 µM in human fibroblast cells. In addition, it revealed preferential efficacy, specifically on PSMA-expressing lines with a 65% tumor growth inhibition level on 22Rv1 (PSMA+) xenografts after 14-fold oral administration of PSMA-Abi at a single dose of 500 mg/kg (7.0 g/kg total dose) was observed. This compound showed significantly reduced acute toxicity with comparable efficacy compared to AbiAc.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Próstata/patología , Antagonistas de Andrógenos , Antígenos de Superficie , Androstenos/farmacología
9.
Curr Issues Mol Biol ; 44(11): 5153-5172, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36354663

RESUMEN

Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.

10.
Inorg Chem ; 61(37): 14705-14717, 2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36047922

RESUMEN

We report herein a Pt(IV) prodrug with metronidazole in axial positions Pt-Mnz. The nitroaromatic axial ligand was conjugated with a cisplatin scaffold to irreversibly reduce under hypoxic conditions, thereby retaining the Pt(IV) prodrug in the area of hypoxia. X-ray near-edge adsorption spectroscopy (XANES) on dried drug-preincubated tumor cell samples revealed a gradual release of cisplatin from the Pt-Mnz prodrug instead of rapid intracellular degradation. The ability of the prodrug to penetrate into three-dimensional (3D) spheroid cellular cultures was evaluated by a novel electrochemical assay via a platinum-coated carbon nanoelectrode, capable of single-cell measurements. Using a unique technique of electrochemical measurements in single tumor spheroids, we were able to both detect the real-time response of the axial ligand to hypoxia and establish the depth of penetration of the drug into the tumor model.


Asunto(s)
Antineoplásicos , Profármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Carbono , Línea Celular Tumoral , Cisplatino/química , Humanos , Hipoxia , Ligandos , Metronidazol/farmacología , Platino (Metal)/química , Profármacos/química , Profármacos/farmacología
11.
Curr Issues Mol Biol ; 44(8): 3428-3443, 2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36005132

RESUMEN

Mesenchymal stem cells (MSCs) have a pronounced therapeutic potential in various pathological conditions. Though therapeutic effects of MSC transplantation have been studied for a long time, the underlying mechanisms are still not clear. It has been shown that transplanted MSCs are rapidly eliminated, presumably by apoptosis. As the mechanisms of MSC apoptosis are not fully understood, in the present work we analyzed MSC sensitivity to Fas-induced apoptosis using MSCs isolated from the biopsies of liver fibrosis patients (L-MSCs). The level of cell death was analyzed by flow cytometry in the propidium iodide test. The luminescent ATP assay was used to measure cellular ATP levels; and the mitochondrial membrane potential was assessed using the potential-dependent dye JC-1. We found that human L-MSCs were resistant to Fas-induced cell death over a wide range of FasL and anti-Fas mAb concentrations. At the same time, intrinsic death signal inducers CoCl2 and staurosporine caused apoptosis of L-MSCs in a dose-dependent manner. Despite the absence of Fas-induced cell death treatment of L-MSCs with low concentrations of FasL or anti-Fas mAb resulted in a cellular ATP level decrease, while high concentrations of the inducers caused a decline of the mitochondrial membrane potential. Pre-incubation of L-MSCs with the pro-inflammatory cytokine TNF-α did not promote L-MSC cell death. Our data indicate that human L-MSCs have increased resistance to receptor-mediated cell death even under inflammatory conditions.

12.
Bioorg Med Chem Lett ; 71: 128840, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35661685

RESUMEN

We report an improved series of ligands targeting prostate specific membrane antigen (PSMA). The new compounds were designed by the introduction of changes in the structure of the aromatic fragment at ε-nitrogen atom of lysine that resulted in improved biological parameters. Some of them demonstrated high selectivity and nanomolar IC50 values. We synthesized and tested two conjugates with a fluorescent label Sulfo-Cy5 as an example of the use of the obtained PSMA inhibitors as a basis for the creation of diagnostic preparations.


Asunto(s)
Lisina , Neoplasias de la Próstata , Antígenos de Superficie , Línea Celular Tumoral , Glutamato Carboxipeptidasa II , Humanos , Ligandos , Masculino , Nitrógeno
13.
J Med Chem ; 65(12): 8227-8244, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35675651

RESUMEN

We report herein the design, synthesis, and biological investigation of a series of novel Pt(IV) prodrugs with non-steroidal anti-inflammatory drugs naproxen, diclofenac, and flurbiprofen, as well as these with stearic acid in the axial position. Six Pt(IV) prodrugs 5-10 were designed, which showed superior antiproliferative activity compared to cisplatin as well as an ability to overcome tumor cell line resistance to cisplatin. By tuning the drug lipophilicity via variation of the axial ligands, the most potent Pt(IV) prodrug 7 was obtained, with an enhanced cellular accumulation of up to 153-fold that of cisplatin and nanomolar cytotoxicity both in 2D and 3D cell cultures. Pt2+ species were detected at different depths of MCF-7 spheroids after incubation with Pt(IV) prodrugs using a Pt-coated carbon nanoelectrode. Cisplatin accumulation in vivo in the murine mammary EMT6 tumor tissue of BALB/c mice after Pt(IV) prodrug injection was proved electrochemically as well. The drug tolerance study on BALB/c mice showed good tolerance of 7 in doses up to 8 mg/kg.


Asunto(s)
Antiinflamatorios no Esteroideos , Antineoplásicos , Compuestos de Platino , Profármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Antineoplásicos/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Diseño de Fármacos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Compuestos de Platino/farmacología , Profármacos/farmacología
14.
RSC Adv ; 12(12): 7133-7148, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35424664

RESUMEN

A series of new organic ligands (5Z,5Z')-2,2'-(alkane-α,ω-diyldiselenyl)-bis-5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-ones (L) consisting of two 5-(2-pyridylmethylene)-3,5-dihydro-4H-imidazol-4-one units linked with polymethylene chains of various lengths (n = 2-10, where n is the number of CH2 units) have been synthesized. The reactions of these ligands with CuCl2·2H2O and CuClO4·6H2O gave Cu2+ or Cu1+ containing mono- and binuclear complexes with Cu2LCl x (x = 2-4) or CuL(ClO4) y (y = 1, 2) composition. It was shown that the agents reducing Cu2+ to Cu1+ in the course of complex formation can be both a ligand and an organic solvent in which the reaction is carried out. This fundamentally distinguishes the selenium-containing ligands L from their previously described sulfur analogs, which by themselves are not capable of reducing Cu2+ during complexation under the same conditions. A higher cytotoxicity and reasonable selectivity to cancer cell lines for synthesized complexes of selenium-containing ligands was shown; unlike sulfur analogs, ligands L themselves demonstrate a high cytotoxicity, comparable in some cases to the toxicity of copper-containing complexes.

15.
Anal Chem ; 94(12): 4901-4905, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35285614

RESUMEN

The biodistribution of chemotherapy compounds within tumor tissue is one of the main challenges in the development of antineoplastic drugs, and techniques for simple, inexpensive, sensitive, and selective detection of various analytes in tumors are of great importance. In this paper we propose the use of platinized carbon nanoelectrodes (PtNEs) for the electrochemical detection of platinum-based drugs in various biological models, including single cells and tumor spheroids in vitro and inside solid tumors in vivo. We have demonstrated the quantitative direct detection of Pt(II) in breast adenocarcinoma MCF-7 cells treated with cisplatin and a cisplatin-based DNP prodrug. To realize the potential of this technique in advanced tumor models, we measured Pt(II) in 3D tumor spheroids in vitro and in tumor-bearing mice in vivo. The concentration gradient of Pt(II) species correlated with the distance from the sample surface in MCF-7 tumor spheroids. We then performed the detection of Pt(II) species in tumor-bearing mice treated intravenously with cisplatin and DNP. We found that there was deeper penetration of DNP in comparison to cisplatin. This research demonstrates a minimally invasive, real-time electrochemical technique for the study of platinum-based drugs.


Asunto(s)
Antineoplásicos , Profármacos , Animales , Cisplatino/química , Cisplatino/farmacología , Humanos , Células MCF-7 , Ratones , Profármacos/química , Distribución Tisular
16.
Eur J Med Chem ; 227: 113936, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34717125

RESUMEN

Prostate cancer is one of the most commonly diagnosed men's cancers and remains one of the leading causes of cancer death. The development of approaches to the treatment of this oncological disease is an ongoing process. In this work, we have carried out the selection of ligands for the creation of conjugates based on the drug docetaxel and synthesized a series of three docetaxel conjugates. In vitro cytotoxicity of these molecules was evaluated using the MTT assay. Based on the assay results, we selected the conjugate which showed cytotoxic potential close to unmodified docetaxel. At the same time, the molar solubility of the resulting compound increased up to 20 times in comparison with the drug itself. In vivo evaluation on 22Rv1 (PSMA+) xenograft model demonstrated a good potency of the synthesized conjugate to inhibit tumor growth: the inhibition turned out to be more than 80% at a dose of 30 mg/kg. Pharmacokinetic parameters of conjugate distribution were analyzed. Also, it was found that PSMA-targeted docetaxel conjugate is less toxic than docetaxel itself, the decrease of molar acute toxicity in comparison with free docetaxel was up to 20%. Obtained conjugate PSMA-DOC is a good candidate for further expanded preclinical trials because of high antitumor activity, fewer side toxic effects and better solubility.


Asunto(s)
Antineoplásicos/farmacología , Docetaxel/farmacología , Antígeno Prostático Específico/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Docetaxel/síntesis química , Docetaxel/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Estructura Molecular , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Conejos , Ratas , Ratas Wistar , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
17.
Curr Med Chem ; 29(2): 268-298, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34348608

RESUMEN

Cancer is one of the leading social problems of the modern world. Today prostate cancer is the second leading cause of cancer deaths among men. Targeted drug delivery is widely used to treat and diagnose prostate cancer. Conjugates selectively binding to prostatespecific membrane antigen-based on urea ligands are being actively developed against this disease. The linker has a significant influence on the biological activity of such conjugates. The linker performs a large number of functions, and its modification is one of the key methods for creating the best pharmacological profile. This review aims to discuss and analyze the main approaches to the method of introduction and synthesis of linkers for this type of conjugates without a description of the influence of biologically active molecules, as well as to establish the key modification methods that have a significant role on the structure-activity relationship. For this purpose, a review of the current scientific literature was performed, both for the conjugates under development and those already undergoing clinical trials. It was found that the optimal structure is a linker containing an aliphatic fragment near the vector- molecule (n(CH2) = 3-6), followed by a polypeptide chain consisting of 2 to 4 amino acid residues. The presence of a Phe-Phe dipeptide chain or the introduction of negatively charged groups also has a positive effect. Ongoing research in this field helps to establish the accurate effect of each linker fragment, and the development of solid-phase synthesis methods makes it much easier to achieve this goal.


Asunto(s)
Neoplasias de la Próstata , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Ligandos , Masculino , Péptidos/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Relación Estructura-Actividad
18.
J Med Chem ; 64(23): 17123-17145, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34797052

RESUMEN

Prostate cancer is the second most common type of cancer among men. Its main method of treatment is chemotherapy, which has a wide range of side effects. One of the solutions to this challenge is targeted delivery to prostate cancer cells. Here we synthesized a novel small-molecule PSMA-targeted conjugate based on the monomethyl auristatin E. Its structure and conformational properties were investigated by NMR spectroscopy. Cytotoxicity, intracellular reactive oxygen species induction, and stability under liver microsomes and P450-cytochrome species were investigated for this conjugate. The conjugate demonstrated 77-85% tumor growth inhibition levels on 22Rv1 (PSMA (+)) xenografts, compared with a 37% inhibition level on PC-3 (PSMA (-)) xenografts, in a single dose of 0.3 mg/kg and a sufficiently high therapeutic index of 21. Acute, chronic, and subchronic toxicities and pharmacokinetics have shown that the synthesized conjugate is a promising potential agent for the chemotherapy of prostate cancer.


Asunto(s)
Antígenos de Superficie/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Glutamato Carboxipeptidasa II/química , Oligopéptidos/química , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Humanos , Masculino , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Neoplasias de la Próstata/patología , Especies Reactivas de Oxígeno/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Cells ; 10(11)2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34831220

RESUMEN

Animal model studies and first clinical trials have demonstrated the safety and efficacy of the mesenchymal stem cells' (MSCs) transplantation in stroke. Intra-arterial (IA) administration looks especially promising, since it provides targeted cell delivery to the ischemic brain, is highly effective, and can be safe as long as the infusion is conducted appropriately. However, wider clinical application of the IA MSCs transplantation will only be possible after a better understanding of the mechanism of their therapeutic action is achieved. On the way to achieve this goal, the study of transplanted cells' fate and their interactions with the blood-brain barrier (BBB) structures could be one of the key factors. In this review, we analyze the available data concerning one of the most important aspects of the transplanted MSCs' action-the ability of cells to cross the blood-brain barrier (BBB) in vitro and in vivo after IA administration into animals with experimental stroke. The collected data show that some of the transplanted MSCs temporarily attach to the walls of the cerebral vessels and then return to the bloodstream or penetrate the BBB and either undergo homing in the perivascular space or penetrate deeper into the parenchyma. Transmigration across the BBB is not necessary for the induction of therapeutic effects, which can be incited through a paracrine mechanism even by cells located inside the blood vessels.


Asunto(s)
Barrera Hematoencefálica/patología , Tratamiento Basado en Trasplante de Células y Tejidos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Accidente Cerebrovascular/terapia , Animales , Ensayos Clínicos como Asunto , Humanos , Inyecciones Intraarteriales
20.
Eur J Med Chem ; 225: 113752, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34464875

RESUMEN

This review presents data on dual conjugates of therapeutic and diagnostic action for targeted delivery to prostate cancer cells. The works of the last ten years on this topic were analyzed. The mail attention focuses on low-molecular-weight conjugates directed to the prostate-specific membrane antigen (PSMA); the comparison of high and low molecular weight PSMA-targeted conjugates was made. The considered conjugates were divided in the review into two main classes: diagnostic bimodal conjugates (which are containing two fragments for different types of diagnostics), theranostic conjugates (containing both therapeutic and diagnostic agents); also bimodal high molecular weight therapeutic conjugates containing two therapeutic agents are briefly discussed. The data of in vitro and in vivo studies for PSMA-targeted double conjugates available by the beginning of 2021 have been analyzed.


Asunto(s)
Antígenos de Superficie/química , Protocolos de Quimioterapia Combinada Antineoplásica/química , Citostáticos/química , Glutamato Carboxipeptidasa II/química , Neoplasias de la Próstata/diagnóstico , Antígenos de Superficie/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Citostáticos/farmacología , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Glutamato Carboxipeptidasa II/metabolismo , Humanos , Masculino , Estructura Molecular , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...