Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AJNR Am J Neuroradiol ; 44(2): 134-142, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36702501

RESUMEN

BACKGROUND AND PURPOSE: For patients with high-grade gliomas, the appearance of a new, enhancing lesion after surgery and chemoradiation represents a diagnostic dilemma. We hypothesized that MR perfusion without and with contrast can differentiate tumor recurrence from radiation necrosis. MATERIALS AND METHODS: In this prospective study, we performed 3 MR perfusion methods: arterial spin-labeling, DSC, and dynamic contrast enhancement. For each lesion, we measured CBF from arterial spin-labeling, uncorrected relative CBV, and leakage-corrected relative CBV from DSC imaging. The volume transfer constant and plasma volume were obtained from dynamic contrast-enhanced imaging without and with T1 mapping using modified Look-Locker inversion recovery (MOLLI). The diagnosis of tumor recurrence or radiation necrosis was determined by either histopathology for patients who underwent re-resection or radiologic follow-up for patients who did not have re-resection. RESULTS: There were 26 patients with 32 lesions, 19 lesions with tumor recurrence and 13 lesions with radiation necrosis. Compared with radiation necrosis, lesions with tumor recurrence had higher CBF (P = .033), leakage-corrected relative CBV (P = .048), and plasma volume using MOLLI T1 mapping (P = .012). For differentiating tumor recurrence from radiation necrosis, the areas under the curve were 0.81 for CBF, 0.80 for plasma volume using MOLLI T1 mapping, and 0.71 for leakage-corrected relative CBV. A correlation was found between CBF and leakage-corrected relative CBV (r s = 0.54), volume transfer constant, and plasma volume (0.50 < r s< 0.77) but not with uncorrected relative CBV (r s = 0.20, P = .29). CONCLUSIONS: In the differentiation of tumor recurrence from radiation necrosis in a newly enhancing lesion, the diagnostic value of arterial spin-labeling-derived CBF is similar to that of DSC and dynamic contrast-enhancement-derived blood volume.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Estudios Prospectivos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Recurrencia Local de Neoplasia/diagnóstico por imagen , Recurrencia Local de Neoplasia/patología , Marcadores de Spin , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Glioma/diagnóstico por imagen , Glioma/patología , Necrosis , Circulación Cerebrovascular
2.
Opt Lett ; 37(15): 3279-81, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22859158

RESUMEN

We introduce two static methods to break the phase-matching symmetry in third harmonic generation with a focused Gaussian beam in the tight focusing limit, dramatically increasing the conversion efficiency and mode quality. Both rely on inhibiting harmonic generation immediately after the beam waist, preventing the near perfect cancellation of the third harmonic generation (THG) from before and after the focus. The first method involves placing a thin metal septum at the waist: the laser drills a small pinhole, which, in turn, disrupts the beam focus after the pinhole. The second method is based on placing a large χ(3) gas before the focus and a small χ(3) gas after the focus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA