Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(9)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37174716

RESUMEN

High-dose recombinant human IL-2 (rhIL-2, aldesleukin) emerged as an important treatment option for selected patients with metastatic melanoma and metastatic renal cell carcinoma, producing durable and long-lasting antitumor responses in a small fraction of patients and heralding the potential of cancer immunotherapy. However, the adoption of high-dose rhIL-2 has been restricted by its severe treatment-related adverse event (TRAE) profile, which necessitates highly experienced clinical providers familiar with rhIL-2 administration and readily accessible critical care medicine support. Given the comparatively wide-ranging successes of immune checkpoint inhibitors and chimeric antigen receptor T cell therapies, there have been concerted efforts to significantly improve the efficacy and toxicities of IL-2-based immunotherapeutic approaches. In this review, we highlight novel drug development strategies, including biochemical modifications and engineered IL-2 variants, to expand the narrow therapeutic window of IL-2 by leveraging downstream activation of the IL-2 receptor to selectively expand anti-tumor CD8-positive T cells and natural killer cells. These modified IL-2 cytokines improve single-agent activity in solid tumor malignancies beyond the established United States Food and Drug Administration (FDA) indications of metastatic melanoma and renal cell carcinoma, and may also be safer in rational combinations with established treatment modalities, including anti-PD-(L)1 and anti-CTLA-4 immunotherapy, chemotherapies, and targeted therapy approaches.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Melanoma , Humanos , Carcinoma de Células Renales/tratamiento farmacológico , Inmunoterapia , Interleucina-2/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Melanoma/patología
2.
Redox Biol ; 50: 102240, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35063802

RESUMEN

A complex interplay between the extracellular space, cytoplasm and individual organelles modulates Ca2+ signaling to impact all aspects of cell fate and function. In recent years, the molecular machinery linking endoplasmic reticulum stores to plasma membrane Ca2+ entry has been defined. However, the mechanism and pathophysiological relevance of store-independent modes of Ca2+ entry remain poorly understood. Here, we describe how the secretory pathway Ca2+-ATPase SPCA2 promotes cell cycle progression and survival by activating store-independent Ca2+ entry through plasma membrane Orai1 channels in mammary epithelial cells. Silencing SPCA2 expression or briefly removing extracellular Ca2+ increased mitochondrial ROS production, DNA damage and activation of the ATM/ATR-p53 axis leading to G0/G1 phase cell cycle arrest and apoptosis. Consistent with these findings, SPCA2 knockdown confers redox stress and chemosensitivity to DNA damaging agents. Unexpectedly, SPCA2-mediated Ca2+ entry into mitochondria is required for optimal cellular respiration and the generation of mitochondrial membrane potential. In hormone receptor positive (ER+/PR+) breast cancer subtypes, SPCA2 levels are high and correlate with poor survival prognosis. We suggest that elevated SPCA2 expression could drive pro-survival and chemotherapy resistance in cancer cells, and drugs that target store-independent Ca2+ entry pathways may have therapeutic potential in treating cancer.


Asunto(s)
Neoplasias de la Mama , ATPasas Transportadoras de Calcio/genética , Calcio , Daño del ADN , Mitocondrias , Adenosina Trifosfatasas/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Calcio/metabolismo , Señalización del Calcio , ATPasas Transportadoras de Calcio/metabolismo , Femenino , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Respiración , Vías Secretoras
3.
Sci Transl Med ; 13(607)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408079

RESUMEN

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Asunto(s)
Ataxia Telangiectasia , Neuroblastoma , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Resistencia a Antineoplásicos , Humanos , Ratones , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Piridinas , Quinolinas , Telómero , Homeostasis del Telómero
4.
Cancers (Basel) ; 13(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445642

RESUMEN

The secretory pathway Ca2+-ATPase SPCA2 is a tumor suppressor in triple receptor negative breast cancer (TNBC), a highly aggressive molecular subtype that lacks tailored treatment options. Low expression of SPCA2 in TNBC confers poor survival prognosis in patients. Previous work has established that re-introducing SPCA2 to TNBC cells restores basal Ca2+ signaling, represses mesenchymal gene expression, mitigates tumor migration in vitro and metastasis in vivo. In this study, we examined the effect of histone deacetylase inhibitors (HDACi) in TNBC cell lines. We show that the pan-HDACi vorinostat and the class I HDACi romidepsin induce dose-dependent upregulation of SPCA2 transcript with concurrent downregulation of mesenchymal markers and tumor cell migration characteristic of epithelial phenotype. Silencing SPCA2 abolished the ability of HDACi to reverse epithelial to mesenchymal transition (EMT). Independent of ATPase activity, SPCA2 elevated resting Ca2+ levels to activate downstream components of non-canonical Wnt/Ca2+ signaling. HDACi treatment led to SPCA2-dependent phosphorylation of CAMKII and ß-catenin, turning Wnt signaling off. We conclude that SPCA2 mediates the efficacy of HDACi in reversing EMT in TNBC by a novel mode of non-canonical Wnt/Ca2+ signaling. Our findings provide incentive for screening epigenetic modulators that exploit Ca2+ signaling pathways to reverse EMT in breast tumors.

5.
Anticancer Drugs ; 32(3): 233-247, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33323683

RESUMEN

DNA-damaging chemotherapy is a major component of therapy for high-risk neuroblastoma, and patients often relapse with treatment-refractory disease. We hypothesized that DNA repair genes with increased expression in alkylating agent resistant models would provide therapeutic targets for enhancing chemotherapy. In-vitro cytotoxicity of alkylating agents for 12 patient-derived neuroblastoma cell lines was assayed using DIMSCAN, and mRNA expression of 57 DNA repair, three transporter, and two glutathione synthesis genes was assessed by TaqMan low-density array (TLDA) with further validation by qRT-PCR in 26 cell lines. O6-methylguanine-DNA methyltransferase (MGMT) mRNA was upregulated in cell lines with greater melphalan and temozolomide (TMZ) resistance. MGMT expression also correlated significantly with resistance to TMZ+irinotecan (IRN) (in-vitro as the SN38 active metabolite). Forced overexpression of MGMT (lentiviral transduction) in MGMT non-expressing cell lines significantly increased TMZ+SN38 resistance. The MGMT inhibitor O6-benzylguanine (O6BG) enhanced TMZ+SN38 in-vitro cytotoxicity, H2AX phosphorylation, caspase-3 cleavage, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling. TMZ+IRN+O6BG delayed tumor growth and increased survival relative to TMZ+IRN in two of seven patient-derived xenografts established at time of death from progressive neuroblastoma. We demonstrated that high MGMT expression was associated with resistance to alkylating agents and TMZ+IRN in preclinical neuroblastoma models. The MGMT inhibitor O6BG enhanced the anticancer effect of TMZ+IRN in vitro and in vivo. These results support further preclinical studies exploring MGMT as a therapeutic target and biomarker of TMZ+IRN resistance in high-risk neuroblastoma.


Asunto(s)
Antineoplásicos/farmacología , Guanina/análogos & derivados , Irinotecán/farmacología , O(6)-Metilguanina-ADN Metiltransferasa/antagonistas & inhibidores , Temozolomida/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular , Reparación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Guanina/farmacología , Humanos , Ratones , Neuroblastoma/tratamiento farmacológico , ARN Mensajero , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulación hacia Arriba
6.
Anticancer Drugs ; 32(1): 34-43, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33079733

RESUMEN

T-cell lymphoid malignancies (TCLMs) are in need of novel and more effective therapies. The histone deacetylase (HDAC) inhibitors and the synthetic cytotoxic retinoid fenretinide have achieved durable clinical responses in T-cell lymphomas as single agents, and patients who failed prior HDAC inhibitor treatment have responded to fenretinide. We have previously shown fenretinide synergized with the class I HDAC inhibitor romidepsin in preclinical models of TCLMs. There exist some key differences between HDAC inhibitors. Therefore, we determined if the pan-HDAC inhibitor vorinostat synergizes with fenretinide. We demonstrated cytotoxic synergy between vorinostat and fenretinide in nine TCLM cell lines at clinically achievable concentrations that lacked cytotoxicity for non-malignant cells (fibroblasts and blood mononuclear cells). In vivo, vorinostat + fenretinide + ketoconazole (enhances fenretinide exposures by inhibiting fenretinide metabolism) showed greater activity in subcutaneous TCLM xenograft models than other groups. Fenretinide + vorinostat increased reactive oxygen species (ROS, measured by 2',7'-dichlorodihydrofluorescein diacetate dye), resulting in increased apoptosis (via transferase dUTP nick end labeling assay) and histone acetylation (by immunoblotting). The synergistic cytotoxicity, apoptosis, and histone acetylation of fenretinide + vorinostat was abrogated by the antioxidant vitamin C. Like romidepsin, vorinostat combined with fenretinide achieved synergistic cytotoxic activity and increased histone acetylation in preclinical models of TCLMs, but not in non-malignant cells. As vorinostat is an oral agent and not a P-glycoprotein substrate it may have advantages in such combination therapy. These data support conducting a clinical trial of vorinostat combined with fenretinide in relapsed and refractory TCLMs.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Sinergismo Farmacológico , Linfoma de Células T/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Adolescente , Adulto , Animales , Apoptosis , Proliferación Celular , Niño , Preescolar , Fenretinida/administración & dosificación , Humanos , Recién Nacido , Linfoma de Células T/metabolismo , Linfoma de Células T/patología , Ratones , Ratones Desnudos , Persona de Mediana Edad , Pronóstico , Células Tumorales Cultivadas , Vorinostat/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
7.
Medicina (Kaunas) ; 56(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392854

RESUMEN

The majority of pediatric patients are cured of their primary cancer with current advanced developments in pediatric cancer therapy. However, survivors often experience long-term complications from therapies for primary cancer. The delayed mortality rate has been decreasing with the effort to reduce the therapeutic exposure of patients with pediatric cancers. Our study investigates the incidence of sarcoma as second cancer in pediatric cancer survivors. We present a 9-year-old male who survived embryonal hepatoblastoma diagnosed at 22 months of age. At 4.5 years of age, he presented with a non-metastatic primitive neuroectodermal tumor (PNET) of the left submandibular area. He has no evidence of recurrence of either cancer for 51 months after finishing all chemotherapy and radiotherapy. We used the Surveillance, Epidemiology, and End Results (SEER) database to identify the current rate of second sarcomas in pediatric cancer survivors. Our literature review and large population analysis emphasize the impact of sarcoma as a second malignancy and provide help to physicians caring for pediatric cancer survivors.


Asunto(s)
Supervivientes de Cáncer/psicología , Neoplasias Primarias Secundarias/etiología , Sarcoma/complicaciones , Niño , Hepatoblastoma , Humanos , Incidencia , Masculino , Neoplasias Primarias Secundarias/epidemiología , Neoplasias Primarias Secundarias/psicología , Vigilancia de la Población/métodos , Factores de Riesgo , Sarcoma/epidemiología
8.
Cell Death Dis ; 11(5): 368, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32409685

RESUMEN

Despite the improvement in clinical outcome with 13-cis-retinoic acid (13-cisRA) + anti-GD2 antibody + cytokine immunotherapy given in first response ~40% of high-risk neuroblastoma patients die of recurrent disease. MYCN genomic amplification is a biomarker of aggressive tumors in the childhood cancer neuroblastoma. MYCN expression is downregulated by 13-cisRA, a differentiating agent that is a component of neuroblastoma therapy. Although MYC amplification is rare in neuroblastoma at diagnosis, we report transcriptional activation of MYC medicated by the transcription factor OCT4, functionally replacing MYCN in 13-cisRA-resistant progressive disease neuroblastoma in large panels of patient-derived cell lines and xenograft models. We identified novel OCT4-binding sites in the MYC promoter/enhancer region that regulated MYC expression via phosphorylation by MAPKAPK2 (MK2). OCT4 phosphorylation at the S111 residue by MK2 was upstream of MYC transcriptional activation. Expression of OCT4, MK2, and c-MYC was higher in progressive disease relative to pre-therapy neuroblastomas and was associated with inferior patient survival. OCT4 or MK2 knockdown decreased c-MYC expression and restored the sensitivity to 13-cisRA. In conclusion, we demonstrated that high c-MYC expression independent of genomic amplification is associated with disease progression in neuroblastoma. MK2-mediated OCT4 transcriptional activation is a novel mechanism for activating the MYC oncogene in progressive disease neuroblastoma that provides a therapeutic target.


Asunto(s)
Diferenciación Celular/genética , Neuroblastoma/patología , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Diferenciación Celular/fisiología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Proteína Proto-Oncogénica N-Myc/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Oncogénicas/metabolismo , Activación Transcripcional/fisiología
9.
Biochim Biophys Acta Mol Basis Dis ; 1866(4): 165339, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30481586

RESUMEN

Unlike other normal cells, a subpopulation of cells often termed as "stem cells" are long-lived and generate cellular progeny throughout life. Cancer stem cells (CSCs) are rare immortal cells within a tumor that can both self-renew by dividing and giving rise to many cell types that constitute the tumor. CSCs also have been shown to be involved in fundamental processes of cell proliferation and metastatic dissemination. CSCs are generally resistant to chemotherapy and radiotherapy, a subset of remaining CSCs after therapy can survive and promote cancer relapse and resistance to therapies. Understanding the biological characteristics of CSCs, the pathways leading to their sustainability and proliferation, and the CSCs role in drug resistance is crucial for establishing novel tumor diagnostic and therapeutic strategies. In this review, we address the pathways that regulate CSCs, the role of CSCs in the resistance to therapy, and strategies to overcome therapeutic resistance.


Asunto(s)
Proliferación Celular , Resistencia a Antineoplásicos , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/patología , Neoplasias/terapia , Células Madre Neoplásicas/patología
10.
Cell Calcium ; 85: 102109, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31783287

RESUMEN

An important component of breast milk, calcium also appears as radiographically prominent microcalcifications in breast tissue that are often the earliest sign of malignancy. Ionic Ca2+ is a universal second messenger that controls a wide swathe of effector pathways integral to gene transcription, cell cycle control, differentiation, proliferation, cell migration, and apoptosis. Whereas prolonged elevation in resting Ca2+ levels drives proliferation to initiate and sustain tumor growth, depletion of calcium stores and attenuation of calcium influx pathways underlies tumor chemoresistance and evasion of apoptosis. This paradox of Ca2+ homeostasis highlights the challenge of targeting Ca2+ signaling pathways for breast cancer therapy. Furthermore, breast cancer is a heterogeneous disease classified into distinct subtypes based on tumor origin, stage of invasiveness and hormone receptor status. Classification is important for tailoring treatment, and in predicting clinical outcome or response to chemotherapy. There have been numerous reports of dysregulated expression, localization or activity of Ca2+ channels, regulators and pumps in breast cancer. An important aspect of these alterations is that they are specific to breast cancer subtype, as exemplified by a reciprocal switch in secretory pathway Ca2+-ATPase isoforms SPCA1 and SPCA2 depending on receptor status. In this review, we discuss the current knowledge of subtype specific changes in calcium channels and pumps, with a focus on functional insights that may inform new opportunities for breast cancer therapy.


Asunto(s)
Neoplasias de la Mama/clasificación , Neoplasias de la Mama/metabolismo , Señalización del Calcio , Calcio/metabolismo , Femenino , Humanos , Modelos Biológicos , Pronóstico
11.
Children (Basel) ; 6(12)2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31795500

RESUMEN

INTRODUCTION: Survivors of childhood cancer have an increased risk of developing a subsequent secondary malignant neoplasm (SMN). Among five-year survivors of primary cancer, SMNs account for nearly half of non-relapse deaths, which make them the most frequent cause of non-relapse mortality. Leukemia is the most common childhood cancer and the five-year survival rate of leukemia has drastically improved over the past two decades. Therefore, the chances of developing SMNs are higher in pediatric (0-19 years) leukemia survivors. METHODS: The US based Surveillance, Epidemiology, and End Results (SEER-18) database (1973-2014) was probed for SMNs in the pediatric population (age ≤ 19). Variables Sequence-number central, primary site and ICCC3WHO were used to identify the first and second cancers among patients who developed SMN. RESULTS: Our SEER database analysis found 99,380 cases of pediatric primary malignancies (0-19 years), of which 1803 (1.81%) patients developed SMN. The breakdown of SMNs in pediatric leukemia survivors (n = 251) showed thyroid carcinoma (18.33% of cases) as the most common second cancer, followed by sarcoma (15.14%), astrocytoma (10.36%), lymphoma (9.56%), salivary gland carcinoma (7.17%), melanoma (4.38%), and breast cancer (3.98%). Interestingly, we found that over 76% of SMNs that were developed by leukemia patients occurred within 20 years after initial leukemia diagnosis. However, some SMNs occur during later age, for example, the mean age for breast cancer occurrence in leukemia survivors is 26.20 ± 8.53 years after initial leukemia diagnosis. CONCLUSIONS: Our study presented comprehensive rates of SMNs among pediatric cancers survivors, and the potential SMNs for pediatric leukemia survivors. This information could we used by oncologists, patients, patient families, and cancer researchers to understand the long-term risks that are associated with the development of SMNs in pediatric leukemia survivors.

12.
Mol Cancer Ther ; 18(12): 2270-2282, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31484706

RESUMEN

Recurrent high-risk neuroblastoma is a childhood cancer that often fails to respond to therapy. Fenretinide (4-HPR) is a cytotoxic retinoid with clinical activity in recurrent neuroblastoma and venetoclax (ABT-199) is a selective inhibitor of the antiapoptotic protein B-cell lymphoma-2 (BCL-2). We evaluated activity of 4-HPR + ABT-199 in preclinical models of neuroblastoma. Patient-derived cell lines and xenografts from progressive neuroblastoma were tested. Cytotoxicity was evaluated by DIMSCAN, apoptosis by flow cytometry, and gene expression by RNA sequencing, quantitative RT-PCR, and immunoblotting. 4-HPR + ABT-199 was highly synergistic against high BCL-2-expressing neuroblastoma cell lines and significantly improved event-free survival of mice carrying high BCL-2-expressing patient-derived xenografts (PDX). In 10 matched-pair cell lines [established at diagnosis (DX) and progressive disease (PD) from the same patients], BCL-2 expression in the DX and PD lines was comparable, suggesting that BCL-2 expression at diagnosis may provide a biomarker for neuroblastomas likely to respond to 4-HPR + ABT-199. In a pair of DX (COG-N-603x) and PD (COG-N-623x) PDXs established from the same patient, COG-N-623x was less responsive to cyclophosphamide + topotecan than COG-N-603x, but both DX and PD PDXs were responsive to 4-HPR + ABT-199. Synergy of 4-HPR + ABT-199 was mediated by induction of NOXA via 4-HPR stimulation of reactive oxygen species that induced expression of ATF4 and ATF3, transcription factors for NOXA. Thus, fenretinide + venetoclax is a synergistic combination that warrants clinical testing in high BCL-2-expressing neuroblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Fenretinida/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sulfonamidas/uso terapéutico , Animales , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Fenretinida/farmacología , Humanos , Ratones , Sulfonamidas/farmacología
13.
Mol Cancer Res ; 17(8): 1735-1747, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31076498

RESUMEN

Progression of benign tumors to invasive, metastatic cancer is accompanied by the epithelial-to-mesenchymal transition (EMT), characterized by loss of the cell-adhesion protein E-cadherin. Although silencing mutations and transcriptional repression of the E-cadherin gene have been widely studied, not much is known about posttranslational regulation of E-cadherin in tumors. We show that E-cadherin is tightly coexpressed with the secretory pathway Ca2+-ATPase isoform 2, SPCA2 (ATP2C2), in breast tumors. Loss of SPCA2 impairs surface expression of E-cadherin and elicits mesenchymal gene expression through disruption of cell adhesion in tumorspheres and downstream Hippo-YAP signaling. Conversely, ectopic expression of SPCA2 in triple-negative breast cancer elevates baseline Ca2+ and YAP phosphorylation, enhances posttranslational expression of E-cadherin, and suppresses mesenchymal gene expression. Thus, loss of SPCA2 phenocopies loss of E-cadherin in the Hippo signaling pathway and EMT-MET transitions, consistent with a functional role for SPCA2 in E-cadherin biogenesis. Furthermore, we show that SPCA2 suppresses invasive phenotypes, including cell migration in vitro and tumor metastasis in vivo. Based on these findings, we propose that SPCA2 functions as a key regulator of EMT and may be a potential therapeutic target for treatment of metastatic cancer. IMPLICATIONS: Posttranslational control of E-cadherin and the Hippo pathway by calcium signaling regulates EMT in breast cancer cells.


Asunto(s)
Antígenos CD/metabolismo , Neoplasias de la Mama/patología , Cadherinas/metabolismo , ATPasas Transportadoras de Calcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/metabolismo , Animales , Antígenos CD/genética , Apoptosis , Cadherinas/genética , ATPasas Transportadoras de Calcio/genética , Proteínas de Ciclo Celular/genética , Movimiento Celular , Proliferación Celular , Femenino , Vía de Señalización Hippo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Factores de Transcripción/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Int J Mol Sci ; 20(5)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841513

RESUMEN

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) counteract with each other to regulate gene expression by altering chromatin structure. Aberrant HDAC activity was reported in many human diseases including wide range of cancers, viral infections, cardiovascular complications, auto-immune diseases and kidney diseases. HDAC inhibitors are small molecules designed to block the malignant activity of HDACs. Chemokines and cytokines control inflammation, immunological and other key biological processes and are shown to be involved in various malignancies. Various HDACs and HDAC inhibitors were reported to regulate chemokines and cytokines. Even though HDAC inhibitors have remarkable anti-tumor activity in hematological cancers, they are not effective in treating many diseases and many patients relapse after treatment. However, the role of HDACs and cytokines in regulating these diseases still remain unclear. Therefore, understanding exact mechanisms and effector functions of HDACs are urgently needed to selectively inhibit them and to establish better a platform to combat various malignancies. In this review, we address regulation of chemokines and cytokines by HDACs and HDAC inhibitors and update on HDAC inhibitors in human diseases.


Asunto(s)
Citocinas/metabolismo , Histona Desacetilasas/metabolismo , Neoplasias/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Humanos , Neoplasias/tratamiento farmacológico
15.
Int J Mol Sci ; 19(12)2018 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-30563089

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers and is the third highest among cancer related deaths. Despite modest success with therapy such as gemcitabine, pancreatic cancer incidence remains virtually unchanged in the past 25 years. Among the several driver mutations for PDAC, Kras mutation contributes a central role for its development, progression and therapeutic resistance. In addition, inflammation is implicated in the development of most human cancer, including pancreatic cancer. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is recognized as a key mediator of inflammation and has been frequently observed to be upregulated in PDAC. Several lines of evidence suggest that NF-κB pathways play a crucial role in PDAC development, progression and resistance. In this review, we focused on emphasizing the recent advancements in the involvement of NF-κB in PADC's progression and resistance. We also highlighted the interaction of NF-κB with other signaling pathways. Lastly, we also aim to discuss how NF-κB could be an excellent target for PDAC prevention or therapy. This review could provide insight into the development of novel therapeutic strategies by considering NF-κB as a target to prevent or treat PDAC.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , FN-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/metabolismo , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Sistemas de Liberación de Medicamentos , Humanos , FN-kappa B/genética , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA