Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Eur Heart J ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747976

RESUMEN

BACKGROUND AND AIMS: Brugada syndrome (BrS) is an inherited arrhythmia with a higher disease prevalence and more lethal arrhythmic events in Asians than in Europeans. Genome-wide association studies (GWAS) have revealed its polygenic architecture mainly in European populations. The aim of this study was to identify novel BrS-associated loci and to compare allelic effects across ancestries. METHODS: A GWAS was conducted in Japanese participants, involving 940 cases and 1634 controls, followed by a cross-ancestry meta-analysis of Japanese and European GWAS (total of 3760 cases and 11 635 controls). The novel loci were characterized by fine-mapping, gene expression, and splicing quantitative trait associations in the human heart. RESULTS: The Japanese-specific GWAS identified one novel locus near ZSCAN20 (P = 1.0 × 10-8), and the cross-ancestry meta-analysis identified 17 association signals, including six novel loci. The effect directions of the 17 lead variants were consistent (94.1%; P for sign test = 2.7 × 10-4), and their allelic effects were highly correlated across ancestries (Pearson's R = .91; P = 2.9 × 10-7). The genetic risk score derived from the BrS GWAS of European ancestry was significantly associated with the risk of BrS in the Japanese population [odds ratio 2.12 (95% confidence interval 1.94-2.31); P = 1.2 × 10-61], suggesting a shared genetic architecture across ancestries. Functional characterization revealed that a lead variant in CAMK2D promotes alternative splicing, resulting in an isoform switch of calmodulin kinase II-δ, favouring a pro-inflammatory/pro-death pathway. CONCLUSIONS: This study demonstrates novel susceptibility loci implicating potentially novel pathogenesis underlying BrS. Despite differences in clinical expressivity and epidemiology, the polygenic architecture of BrS was substantially shared across ancestries.

2.
Nat Commun ; 15(1): 3380, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643172

RESUMEN

While 3D chromatin organization in topologically associating domains (TADs) and loops mediating regulatory element-promoter interactions is crucial for tissue-specific gene regulation, the extent of their involvement in human Mendelian disease is largely unknown. Here, we identify 7 families presenting a new cardiac entity associated with a heterozygous deletion of 2 CTCF binding sites on 4q25, inducing TAD fusion and chromatin conformation remodeling. The CTCF binding sites are located in a gene desert at 1 Mb from the Paired-like homeodomain transcription factor 2 gene (PITX2). By introducing the ortholog of the human deletion in the mouse genome, we recapitulate the patient phenotype and characterize an opposite dysregulation of PITX2 expression in the sinoatrial node (ectopic activation) and ventricle (reduction), respectively. Chromatin conformation assay performed in human induced pluripotent stem cell-derived cardiomyocytes harboring the minimal deletion identified in family#1 reveals a conformation remodeling and fusion of TADs. We conclude that TAD remodeling mediated by deletion of CTCF binding sites causes a new autosomal dominant Mendelian cardiac disorder.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Cromatina/genética , Proteínas de Unión al ADN/metabolismo , Genoma
3.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37528649

RESUMEN

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Asunto(s)
Calmodulina , Síndrome de QT Prolongado , Taquicardia Ventricular , Niño , Humanos , Calmodulina/genética , Muerte Súbita Cardíaca/etiología , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Mutación/genética , Sistema de Registros , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/genética
4.
Am J Med Genet A ; 191(12): 2837-2842, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37554039

RESUMEN

Left main coronary artery ostial atresia (LMCAOA) is an extremely rare condition. Here, we report the case of a 14-year-old boy with Noonan syndrome-like disorder in whom LMCAOA was detected following cardiopulmonary arrest. The patient had been diagnosed with Noonan syndrome-like disorder with a pathogenic splice site variant of CBL c.1228-2 A > G. He suddenly collapsed when he was running. After administering two electric shocks using an automated external defibrillator, the patient's heartbeat resumed. Cardiac catheterization confirmed the diagnosis of LMCAOA. Left main coronary artery angioplasty was performed. The patient was discharged without neurological sequelae. Brain magnetic resonance imaging revealed asymptomatic Moyamoya disease. In addition, RNF213 c.14429 G > A p.R4810K was identified. There are no reports on congenital coronary malformations of compound variations of RNF213 and CBL. In contrast, the RNF213 p.R4810K polymorphism has been established as a risk factor for angina pectoris and myocardial infarction in adults, and several congenital coronary malformations due to genetic abnormalities within the RAS/MAPK signaling pathway have been reported. This report aims to highlight the risk of sudden death in patients with RASopathy and RNF213 p.R4810K polymorphism and emphasize the significance of actively searching for coronary artery morphological abnormalities in these patients.


Asunto(s)
Anomalías Múltiples , Paro Cardíaco , Enfermedad de Moyamoya , Síndrome de Noonan , Adulto , Masculino , Humanos , Niño , Adolescente , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/metabolismo , Síndrome de Noonan/complicaciones , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Predisposición Genética a la Enfermedad , Adenosina Trifosfatasas/genética , Ubiquitina-Proteína Ligasas/genética , Enfermedad de Moyamoya/genética , Paro Cardíaco/genética
5.
Circ Arrhythm Electrophysiol ; 16(3): e011387, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36866681

RESUMEN

BACKGROUND: CaM (calmodulin) is a ubiquitously expressed, multifunctional Ca2+ sensor protein that regulates numerous proteins. Recently, CaM missense variants have been identified in patients with malignant inherited arrhythmias, such as long QT syndrome and catecholaminergic polymorphic ventricular tachycardia (CPVT). However, the exact mechanism of CaM-related CPVT in human cardiomyocytes remains unclear. In this study, we sought to investigate the arrhythmogenic mechanism of CPVT caused by a novel variant using human induced pluripotent stem cell (iPSC) models and biochemical assays. METHODS: We generated iPSCs from a patient with CPVT bearing CALM2 p.E46K. As comparisons, we used 2 control lines including an isogenic line, and another iPSC line from a patient with long QT syndrome bearing CALM2 p.N98S (also reported in CPVT). Electrophysiological properties were investigated using iPSC-cardiomyocytes. We further examined the RyR2 (ryanodine receptor 2) and Ca2+ affinities of CaM using recombinant proteins. RESULTS: We identified a novel de novo heterozygous variant, CALM2 p.E46K, in 2 unrelated patients with CPVT accompanied by neurodevelopmental disorders. The E46K-cardiomyocytes exhibited more frequent abnormal electrical excitations and Ca2+ waves than the other lines in association with increased Ca2+ leakage from the sarcoplasmic reticulum via RyR2. Furthermore, the [3H]ryanodine binding assay revealed that E46K-CaM facilitated RyR2 function especially by activating at low [Ca2+] levels. The real-time CaM-RyR2 binding analysis demonstrated that E46K-CaM had a 10-fold increased RyR2 binding affinity compared with wild-type CaM which may account for the dominant effect of the mutant CaM. Additionally, the E46K-CaM did not affect CaM-Ca2+ binding or L-type calcium channel function. Finally, antiarrhythmic agents, nadolol and flecainide, suppressed abnormal Ca2+ waves in E46K-cardiomyocytes. CONCLUSIONS: We, for the first time, established a CaM-related CPVT iPSC-CM model which recapitulated severe arrhythmogenic features resulting from E46K-CaM dominantly binding and facilitating RyR2. In addition, the findings in iPSC-based drug testing will contribute to precision medicine.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Taquicardia Ventricular , Humanos , Calmodulina/genética , Calmodulina/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Taquicardia Ventricular/metabolismo , Arritmias Cardíacas , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Calcio/metabolismo , Mutación
6.
Heart Rhythm ; 20(1): 89-99, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007726

RESUMEN

BACKGROUND: A missense mutation in the α1c subunit of voltage-gated L-type Ca2+ channel-coding CACNA1C-E1115K, located in the Ca2+ selectivity site, causes a variety of arrhythmogenic phenotypes. OBJECTIVE: We aimed to investigate the electrophysiological features and pathophysiological mechanisms of CACNA1C-E1115K in patient-specific induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs). METHODS: We generated iPSCs from a patient carrying heterozygous CACNA1C-E1115K with overlapping phenotypes of long QT syndrome, Brugada syndrome, and mild cardiac dysfunction. Electrophysiological properties were investigated using iPSC-CMs. We used iPSCs from a healthy individual and an isogenic iPSC line corrected using CRISPR-Cas9-mediated gene editing as controls. A mathematical E1115K-CM model was developed using a human ventricular cell model. RESULTS: Patch-clamp analysis revealed that E1115K-iPSC-CMs exhibited reduced peak Ca2+ current density and impaired Ca2+ selectivity with an increased permeability to monovalent cations. Consequently, E1115K-iPSC-CMs showed decreased action potential plateau amplitude, longer action potential duration (APD), and a higher frequency of early afterdepolarization compared with controls. In optical recordings examining the antiarrhythmic drug effect, late Na+ channel current (INaL) inhibitors (mexiletine and GS-458967) shortened APDs specifically in E1115K-iPSC-CMs. The AP-clamp using a voltage command obtained from E1115K-iPSC-CMs with lower action potential plateau amplitude and longer APD confirmed the upregulation of INaL. An in silico study recapitulated the in vitro electrophysiological properties. CONCLUSION: Our iPSC-based analysis in CACNA1C-E1115K with disrupted CaV1.2 selectivity demonstrated that the aberrant currents through the mutant channels carried by monovalent cations resulted in specific action potential changes, which increased endogenous INaL, thereby synergistically contributing to the arrhythmogenic phenotype.


Asunto(s)
Síndrome de Brugada , Canales de Calcio Tipo L , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Potenciales de Acción , Síndrome de Brugada/genética , Síndrome de Brugada/metabolismo , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/metabolismo , Fenotipo
7.
PLoS One ; 17(12): e0277242, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36480497

RESUMEN

Long QT syndrome (LQTS) is one of the most common inherited arrhythmias and multiple genes have been reported as causative. Presently, genetic diagnosis for LQTS patients is becoming widespread and contributing to implementation of therapies. However, causative genetic mutations cannot be detected in about 20% of patients. To elucidate additional genetic mutations in LQTS, we performed deep-sequencing of previously reported 15 causative and 85 candidate genes for this disorder in 556 Japanese LQTS patients. We performed in-silico filtering of the sequencing data and found 48 novel variants in 33 genes of 53 cases. These variants were predicted to be damaging to coding proteins or to alter the binding affinity of several transcription factors. Notably, we found that most of the LQTS-related variants in the RYR2 gene were in the large cytoplasmic domain of the N-terminus side. They might be useful for screening of LQTS patients who had no known genetic factors. In addition, when the mechanisms of these variants in the development of LQTS are revealed, it will be useful for early diagnosis, risk stratification, and selection of treatment.


Asunto(s)
Pueblos del Este de Asia , Síndrome de QT Prolongado , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética , Secuenciación de Nucleótidos de Alto Rendimiento
8.
J Pediatr Genet ; 11(4): 313-316, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36267859

RESUMEN

Long QT syndromes (LQTSs) can lead to sudden cardiac death, yet these syndromes are often asymptomatic and clinically undetected, despite the prolongation of the QT interval. Currently, when a disease-causing variant is identified in an individual, presymptomatic genetic testing is available and can form part of the recommended cascade testing to identify other family members at risk. We herein report the cases of two daughters who received presymptomatic genetic testing in infancy when the proband mother had been diagnosed with LQTS type 2 (LQT2; c.1171C > T, p.Q391X in KCNH2) after suffering from cardiac arrhythmia at 30 years of age. The daughters had a normal QTc interval, but they carried the same disease-causing variant as their mother. Children with family members who have genetically confirmed LQTS have a high risk of suffering from cardiac events later in life, so genetic testing is required. This poses a complex problem, as guidelines for medical intervention and follow-up systems among asymptomatic children with LQTS have yet to be established. Genetic testing should only be performed after adequate counseling to support children later in life. Individualized long-term genetic counseling is required for both parents and children at stages throughout life.

11.
Hum Genome Var ; 9(1): 28, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941102

RESUMEN

Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a hereditary cardiomyopathy that results in fatal arrhythmias and heart failure. Herein, we report a Japanese patient with ARVC whose parents were blood relatives. Genetic testing identified a homozygous rare variant, c.1592T > G (p.Phe531Cys), of DSG2 that is presumed to be a founder variant among East Asians. Genetic counseling sessions with precise risk assessment and appropriate follow-up programs were provided to the patient and family members.

14.
Heart Rhythm ; 19(2): 318-329, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34678525

RESUMEN

BACKGROUND: Electrical storm (ES) is a life-threatening emergency in patients at high risk of ventricular tachycardia/ventricular fibrillation (VF), but the pathophysiology and molecular basis are poorly understood. OBJECTIVE: The purpose of this study was to explore the electrophysiological substrate for experimental ES. METHODS: A model was created by inducing chronic complete atrioventricular block in defibrillator-implanted rabbits, which recapitulates QT prolongation, torsades des pointes (TdP), and VF episodes. RESULTS: Optical mapping revealed island-like regions with action potential duration (APD) prolongation in the left ventricle, leading to increased spatial APD dispersion, in rabbits with ES (defined as ≥3 VF episodes/24 h). The maximum APD and its dispersion correlated with the total number of VF episodes in vivo. TdP was initiated by an ectopic beat that failed to enter the island and formed a reentrant wave and perpetuated by rotors whose centers swirled in the periphery of the island. Epinephrine exacerbated the island by prolonging APD and enhancing APD dispersion, which was less evident after late Na+ current blockade with 10 µM ranolazine. Nonsustained ventricular tachycardia in a non-ES rabbit heart with homogeneous APD prolongation resulted from multiple foci with an electrocardiographic morphology different from TdP driven by drifting rotors in ES rabbit hearts. The neuronal Na+-channel subunit NaV1.8 was upregulated in ES rabbit left ventricular tissues and expressed within the myocardium corresponding to the island location in optically mapped ES rabbit hearts. The NaV1.8 blocker A-803467 (10 mg/kg, intravenously) attenuated QT prolongation and suppressed epinephrine-evoked TdP. CONCLUSION: A tissue island with enhanced refractoriness contributes to the generation of drifting rotors that underlies ES in this model. NaV1.8-mediated late Na+ current merits further investigation as a contributor to the substrate for ES.


Asunto(s)
Bloqueo Atrioventricular/fisiopatología , Taquicardia Ventricular/fisiopatología , Torsades de Pointes/fisiopatología , Potenciales de Acción , Animales , Bloqueo Atrioventricular/tratamiento farmacológico , Desfibriladores Implantables , Modelos Animales de Enfermedad , Síndrome de QT Prolongado/fisiopatología , Conejos , Ranolazina/farmacología
15.
Circ J ; 86(1): 118-127, 2021 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-34615813

RESUMEN

BACKGROUND: The usefulness of electrocardiographic (ECG) voltage criteria for diagnosing hypertrophic cardiomyopathy (HCM) in pediatric patients is poorly defined.Methods and Results:ECGs at the 1st grade (mean [±SD] age 6.6±0.3 years) were available for 11 patients diagnosed with HCM at around the 7th grade (13.2±0.3 years). ECGs were available for another 64 patients diagnosed with HCM in the 1st (n=15), 7th (n=32), and 10th (n=17) grades. Fifty-one voltage criteria were developed by grade and sex using 62,841 ECGs from the general population. Voltage criteria were set at the 99.95th percentile (1/2,000) point based on the estimated prevalence of childhood HCM (2.9 per 100,000 [1/34,483]) to decrease false negatives. Conventional criteria were from guidelines for school-aged children in Japan. Of 11 patients before diagnosis, 2 satisfied conventional criteria in 1st grade; 5 (56%) of the remaining 9 patients fulfilled 2 voltage criteria (R wave in limb-lead I [RI]+S wave in lead V3 [SV3] and R wave in lead V3 [RV3]+SV3). Robustness analysis for sensitivity showed RV3+SV3 was superior to RI+SV3. For all patients after diagnosis, RI+SV4 was the main candidate. However, conventional criteria were more useful than voltage criteria. CONCLUSIONS: Early HCM prediction was possible using RV3+SV3 in >50% of patients in 1st grade. Voltage criteria may help diagnose prediagnostic or early HCM, and prevent tragic accidents, although further prospective studies are required.


Asunto(s)
Cardiomiopatía Hipertrófica , Adolescente , Cardiomiopatía Hipertrófica/diagnóstico , Cardiomiopatía Hipertrófica/epidemiología , Niño , Electrocardiografía/métodos , Humanos , Japón , Estudios Prospectivos
16.
Circ Genom Precis Med ; 14(4): e003289, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309407

RESUMEN

BACKGROUND: The proliferation of genetic profiling has revealed many associations between genetic variations and disease. However, large-scale phenotyping efforts in largely healthy populations, coupled with DNA sequencing, suggest variants currently annotated as pathogenic are more common in healthy populations than previously thought. In addition, novel and rare variants are frequently observed in genes associated with disease both in healthy individuals and those under suspicion of disease. This raises the question of whether these variants can be useful predictors of disease. To answer this question, we assessed the degree to which the presence of a variant in the cardiac potassium channel gene KCNH2 was diagnostically predictive for the autosomal dominant long QT syndrome. METHODS: We estimated the probability of a long QT diagnosis given the presence of each KCNH2 variant using Bayesian methods that incorporated variant features such as changes in variant function, protein structure, and in silico predictions. We call this estimate the posttest probability of disease. Our method was applied to over 4000 individuals heterozygous for 871 missense or in-frame insertion/deletion variants in KCNH2 and validated against a separate international cohort of 933 individuals heterozygous for 266 missense or in-frame insertion/deletion variants. RESULTS: Our method was well-calibrated for the observed fraction of heterozygotes diagnosed with long QT syndrome. Heuristically, we found that the innate diagnostic information one learns about a variant from 3-dimensional variant location, in vitro functional data, and in silico predictors is equivalent to the diagnostic information one learns about that same variant by clinically phenotyping 10 heterozygotes. Most importantly, these data can be obtained in the absence of any clinical observations. CONCLUSIONS: We show how variant-specific features can inform a prior probability of disease for rare variants even in the absence of clinically phenotyped heterozygotes.


Asunto(s)
Canal de Potasio ERG1 , Heterocigoto , Mutación INDEL , Síndrome de QT Prolongado , Mutación Missense , Humanos , Síndrome de QT Prolongado/diagnóstico , Síndrome de QT Prolongado/genética
17.
Eur Heart J ; 42(29): 2854-2863, 2021 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-34219138

RESUMEN

AIMS: The prognostic value of genetic variants for predicting lethal arrhythmic events (LAEs) in Brugada syndrome (BrS) remains controversial. We investigated whether the functional curation of SCN5A variations improves prognostic predictability. METHODS AND RESULTS: Using a heterologous expression system and whole-cell patch clamping, we functionally characterized 22 variants of unknown significance (VUSs) among 55 SCN5A mutations previously curated using in silico prediction algorithms in the Japanese BrS registry (n = 415). According to the loss-of-function (LOF) properties, SCN5A mutation carriers (n = 60) were divided into two groups: LOF-SCN5A mutations and non-LOF SCN5A variations. Functionally proven LOF-SCN5A mutation carriers (n = 45) showed significantly severer electrocardiographic conduction abnormalities and worse prognosis associated with earlier manifestations of LAEs (7.9%/year) than in silico algorithm-predicted SCN5A carriers (5.1%/year) or all BrS probands (2.5%/year). Notably, non-LOF SCN5A variation carriers (n = 15) exhibited no LAEs during the follow-up period. Multivariate analysis demonstrated that only LOF-SCN5A mutations and a history of aborted cardiac arrest were significant predictors of LAEs. Gene-based association studies using whole-exome sequencing data on another independent SCN5A mutation-negative BrS cohort (n = 288) showed no significant enrichment of rare variants in 16 985 genes including 22 non-SCN5A BrS-associated genes as compared with controls (n = 372). Furthermore, rare variations of non-SCN5A BrS-associated genes did not affect LAE-free survival curves. CONCLUSION: In vitro functional validation is key to classifying the pathogenicity of SCN5A VUSs and for risk stratification of genetic predictors of LAEs. Functionally proven LOF-SCN5A mutations are genetic burdens of sudden death in BrS, but evidence for other BrS-associated genes is elusive.


Asunto(s)
Síndrome de Brugada , Síndrome de Brugada/genética , Humanos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Virulencia
18.
Europace ; 23(12): 2029-2038, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34179980

RESUMEN

AIMS: Although shortening of the corrected QT interval (QTc) is a key finding in the diagnosis of short QT syndrome (SQTS), there may be overlap of the QTc between SQTS patients and normal subjects in childhood and adolescence. We aimed to investigate electrocardiographic findings for differentiation of SQTS patients. METHODS AND RESULTS: The SQTS group comprised 34 SQTS patients <20 years old, including 9 from our institutions and 25 from previous reports. The control group comprised 61 apparently healthy subjects with an QTc of <360 ms who were selected from 13 314 participants in a school-based screening programme. We compared electrocardiographic findings, including QT and Jpoint-Tpeak intervals (QT and J-Tpeak, respectively), those corrected by using the Bazett's and Fridericia's formulae (cB and cF, respectively) and early repolarization (ER) between the groups. QT, QTc by using Bazett's formula (QTcB), QTc by using Fridericia's formula (QTcF), J-Tpeak, J-Tpeak cB, and J-Tpeak cF were significantly shorter in the SQTS group than in the control group. On receiver operating characteristic curve analysis, the area under the curve (AUC) was largest for QTcB (0.888) among QT, QTcB, and QTcF, with a cut-off value of 316 ms (sensitivity: 79.4% and specificity: 96.7%). The AUC was largest for J-Tpeak cB (0.848) among J-Tpeak, J-Tpeak cB, and J-Tpeak cF, with a cut-off value of 181 ms (sensitivity: 80.8% and specificity: 91.8%). Early repolarization was found more frequently in the SQTS group than in the control group (67% vs. 23%, P = 0.001). CONCLUSION: A QTcB <316 ms, J-Tpeak cB < 181 ms, and the presence of ER may indicate SQTS patients in childhood and adolescence.


Asunto(s)
Arritmias Cardíacas , Electrocardiografía , Adolescente , Adulto , Arritmias Cardíacas/diagnóstico , Niño , Electrocardiografía/métodos , Frecuencia Cardíaca/fisiología , Humanos , Adulto Joven
19.
Med Mol Morphol ; 54(3): 259-264, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33651170

RESUMEN

A 16-year-old Japanese man was admitted to our hospital because of syncope during exercise. His father and his younger brother had permanent pacemaker implantation because of sick sinus syndrome. Several examinations revealed first-degree atrioventricular block, complete right bundle branch block, sick sinus syndrome, and ventricular tachycardia with normal cardiac function. As no abnormalities were evident on coronary angiography, right ventricular endomyocardial biopsy was performed. It showed myocardial disarrangement and lipofuscin accumulation in hypertrophic myocytes. Moreover, electron microscopy showed a few degenerative myocytes, Z-band streaming, disarrangement, increased small capillaries with Weibel-Palade bodies in endothelial cells, and endothelial proliferations. Genetic analysis of the proband, his father, and his younger brother revealed a missense mutation, D1275N, in SCN5A, a gene which encodes sodium ion channel protein, are related to cardiomyopathy and arrhythmia. The proband was diagnosed with a cardiac conduction defect (CCD) and underwent permanent pacemaker implantation. These pathological findings suggest various myocardial changes presented in CCD patients with a missense mutation, D1275N, in SCN5A.


Asunto(s)
Trastorno del Sistema de Conducción Cardíaco/genética , Mutación Missense , Miocardio/patología , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adolescente , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Trastorno del Sistema de Conducción Cardíaco/metabolismo , Trastorno del Sistema de Conducción Cardíaco/patología , Trastorno del Sistema de Conducción Cardíaco/terapia , Humanos , Masculino , Linaje
20.
Circ Genom Precis Med ; 13(6): e002911, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33164571

RESUMEN

BACKGROUND: Brugada syndrome (BrS) is characterized by the type 1 Brugada ECG pattern. Pathogenic rare variants in SCN5A (mutations) are identified in 20% of BrS families in whom incomplete penetrance and genotype-negative phenotype-positive individuals are observed. E1784K-SCN5A is the most common SCN5A mutation identified. We determined the association of a BrS genetic risk score (BrS-GRS) and SCN5A mutation type on BrS phenotype in BrS families with SCN5A mutations. METHODS: Subjects with a spontaneous type 1 pattern or positive/negative drug challenge from cohorts harboring SCN5A mutations were recruited from 16 centers (n=312). Single nucleotide polymorphisms previously associated with BrS at genome-wide significance were studied in both cohorts: rs11708996, rs10428132, and rs9388451. An additive linear genetic model for the BrS-GRS was assumed (6 single nucleotide polymorphism risk alleles). RESULTS: In the total population (n=312), BrS-GRS ≥4 risk alleles yielded an odds ratio of 4.15 for BrS phenotype ([95% CI, 1.45-11.85]; P=0.0078). Among SCN5A-positive individuals (n=258), BrS-GRS ≥4 risk alleles yielded an odds ratio of 2.35 ([95% CI, 0.89-6.22]; P=0.0846). In SCN5A-negative relatives (n=54), BrS-GRS ≥4 alleles yielded an odds ratio of 22.29 ([95% CI, 1.84-269.30]; P=0.0146). Among E1784K-SCN5A positive family members (n=79), hosting ≥4 risk alleles gave an odds ratio=5.12 ([95% CI, 1.93-13.62]; P=0.0011). CONCLUSIONS: Common genetic variation is associated with variable expressivity of BrS phenotype in SCN5A families, explaining in part incomplete penetrance and genotype-negative phenotype-positive individuals. SCN5A mutation genotype and a BrS-GRS associate with BrS phenotype, but the strength of association varies according to presence of a SCN5A mutation and severity of loss of function.


Asunto(s)
Síndrome de Brugada/genética , Predisposición Genética a la Enfermedad , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Alelos , Femenino , Estudios de Asociación Genética , Haploinsuficiencia/genética , Humanos , Funciones de Verosimilitud , Mutación con Pérdida de Función/genética , Masculino , Fenotipo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...