Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(10): e0138918, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26466348

RESUMEN

In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000-2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs' and IFLs' locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses.


Asunto(s)
Conservación de los Recursos Naturales/estadística & datos numéricos , Agricultura Forestal/estadística & datos numéricos , Bosques , África , Agricultura/estadística & datos numéricos , Américas , Asia , Australia , Europa (Continente) , Sistemas de Información Geográfica , Humanos , Tecnología de Sensores Remotos , Árboles/crecimiento & desarrollo
2.
Nature ; 509(7499): 218-21, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24805346

RESUMEN

The decomposition of dead organic matter is a major determinant of carbon and nutrient cycling in ecosystems, and of carbon fluxes between the biosphere and the atmosphere. Decomposition is driven by a vast diversity of organisms that are structured in complex food webs. Identifying the mechanisms underlying the effects of biodiversity on decomposition is critical given the rapid loss of species worldwide and the effects of this loss on human well-being. Yet despite comprehensive syntheses of studies on how biodiversity affects litter decomposition, key questions remain, including when, where and how biodiversity has a role and whether general patterns and mechanisms occur across ecosystems and different functional types of organism. Here, in field experiments across five terrestrial and aquatic locations, ranging from the subarctic to the tropics, we show that reducing the functional diversity of decomposer organisms and plant litter types slowed the cycling of litter carbon and nitrogen. Moreover, we found evidence of nitrogen transfer from the litter of nitrogen-fixing plants to that of rapidly decomposing plants, but not between other plant functional types, highlighting that specific interactions in litter mixtures control carbon and nitrogen cycling during decomposition. The emergence of this general mechanism and the coherence of patterns across contrasting terrestrial and aquatic ecosystems suggest that biodiversity loss has consistent consequences for litter decomposition and the cycling of major elements on broad spatial scales.


Asunto(s)
Biodiversidad , Ciclo del Carbono , Ecosistema , Regiones Árticas , Carbono/metabolismo , Nitrógeno/metabolismo , Ciclo del Nitrógeno , Plantas/metabolismo , Clima Tropical
3.
Ecol Lett ; 15(9): 1033-41, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732002

RESUMEN

Plant litter decomposition is a key process in terrestrial carbon cycling, yet the relative importance of various control factors remains ambiguous at a global scale. A full reciprocal litter transplant study with 16 litter species that varied widely in traits and originated from four forest sites covering a large latitudinal gradient (subarctic to tropics) showed a consistent interspecific ranking of decomposition rates. At a global scale, variation in decomposition was driven by a small subset of litter traits (water saturation capacity and concentrations of magnesium and condensed tannins). These consistent findings, that were largely independent of the varying local decomposer communities, suggest that decomposer communities show little specialisation and high metabolic flexibility in processing plant litter, irrespective of litter origin. Our results provide strong support for using trait-based approaches in modelling the global decomposition component of biosphere-atmosphere carbon fluxes.


Asunto(s)
Ciclo del Carbono , Hojas de la Planta/metabolismo , Árboles , Carbono/metabolismo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...