Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-503115

RESUMEN

SARS-CoV-2 Omicron BA.2.75 emerged in May 2022. BA.2.75 is a BA.2 descendant but is phylogenetically different from BA.5, the currently predominant BA.2 descendant. Here, we showed that the effective reproduction number of BA.2.75 is greater than that of BA.5. While the sensitivity of BA.2.75 to vaccination- and BA.1/2 breakthrough infection-induced humoral immunity was comparable to that of BA.2, the immunogenicity of BA.2.75 was different from that of BA.2 and BA.5. Three clinically-available antiviral drugs were effective against BA.2.75. BA.2.75 spike exhibited a profound higher affinity to human ACE2 than BA.2 and BA.5 spikes. The fusogenicity, growth efficiency in human alveolar epithelial cells, and intrinsic pathogenicity in hamsters of BA.2.75 were comparable to those of BA.5 but were greater than those of BA.2. Our multiscale investigations suggest that BA.2.75 acquired virological properties independently of BA.5, and the potential risk of BA.2.75 to global health is greater than that of BA.5.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-486864

RESUMEN

Recent studies have revealed the unique virological characteristics of Omicron, the newest SARS-CoV-2 variant of concern, such as pronounced resistance to vaccine-induced neutralizing antibodies, less efficient cleavage of the spike protein, and poor fusogenicity. However, it remains unclear which mutation(s) in the spike protein determine the virological characteristics of Omicron. Here, we show that the representative characteristics of the Omicron spike are determined by its receptor-binding domain. Interestingly, the molecular phylogenetic analysis revealed that the acquisition of the spike S375F mutation was closely associated with the explosive spread of Omicron in the human population. We further elucidate that the F375 residue forms an interprotomer pi-pi interaction with the H505 residue in another protomer in the spike trimer, which confers the attenuated spike cleavage efficiency and fusogenicity of Omicron. Our data shed light on the evolutionary events underlying Omicron emergence at the molecular level. HighlightsO_LIOmicron spike receptor binding domain determines virological characteristics C_LIO_LISpike S375F mutation results in the poor spike cleavage and fusogenicity in Omicron C_LIO_LIAcquisition of the spike S375F mutation triggered the explosive spread of Omicron C_LIO_LIF375-H505-mediated {pi}-{pi} interaction in the spike determines the phenotype of Omicron C_LI

3.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-488095

RESUMEN

Although the Omicron variant of the SARS-CoV-2 virus is resistant to neutralizing antibodies, it retains susceptibility to cellular immunity. Here, we characterized vaccine-induced T cells specific for various SARS-CoV-2 variants and identified HLA-A*24:02-restricted CD8+ T cells that strongly suppressed Omicron BA.1 replication. Mutagenesis analyses revealed that a G446S mutation, located just outside the N-terminus of the cognate epitope, augmented TCR recognition of this variant. In contrast, no enhanced suppression of replication was observed against cells infected with the prototype, Omicron BA.2, and Delta variants that express G446. The enhancing effect of the G446S mutation was lost when target cells were treated with inhibitors of tripeptidyl peptidase II, a protein that mediates antigen processing. These results demonstrate that the G446S mutation in the Omicron BA.1 variant affects antigen processing/presentation and potentiates antiviral activity by vaccine-induced T cells, leading to enhanced T cell immunity towards emerging variants.

4.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-480335

RESUMEN

Soon after the emergence and global spread of a new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron lineage, BA.1 (ref1, 2), another Omicron lineage, BA.2, has initiated outcompeting BA.1. Statistical analysis shows that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralisation experiments show that the vaccine-induced humoral immunity fails to function against BA.2 like BA.1, and notably, the antigenicity of BA.2 is different from BA.1. Cell culture experiments show that BA.2 is more replicative in human nasal epithelial cells and more fusogenic than BA.1. Furthermore, infection experiments using hamsters show that BA.2 is more pathogenic than BA.1. Our multiscale investigations suggest that the risk of BA.2 for global health is potentially higher than that of BA.1.

5.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-473248

RESUMEN

The SARS-CoV-2 Omicron BA.1 variant emerged in late 2021 and is characterised by multiple spike mutations across all spike domains. Here we show that Omicron BA.1 has higher affinity for ACE2 compared to Delta, and confers very significant evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralising antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralisation. Importantly, antiviral drugs remdesevir and molnupiravir retain efficacy against Omicron BA.1. We found that in human nasal epithelial 3D cultures replication was similar for both Omicron and Delta. However, in lower airway organoids, Calu-3 lung cells and gut adenocarcinoma cell lines live Omicron virus demonstrated significantly lower replication in comparison to Delta. We noted that despite presence of mutations predicted to favour spike S1/S2 cleavage, the spike protein is less efficiently cleaved in live Omicron virions compared to Delta virions. We mapped the replication differences between the variants to entry efficiency using spike pseudotyped virus (PV) entry assays. The defect for Omicron PV in specific cell types correlated with higher cellular RNA expression of TMPRSS2, and accordingly knock down of TMPRSS2 impacted Delta entry to a greater extent as compared to Omicron. Furthermore, drug inhibitors targeting specific entry pathways demonstrated that the Omicron spike inefficiently utilises the cellular protease TMPRSS2 that mediates cell entry via plasma membrane fusion. Instead, we demonstrate that Omicron spike has greater dependency on cell entry via the endocytic pathway requiring the activity of endosomal cathepsins to cleave spike. Consistent with suboptimal S1/S2 cleavage and inability to utilise TMPRSS2, syncytium formation by the Omicron spike was dramatically impaired compared to the Delta spike. Overall, Omicron appears to have gained significant evasion from neutralising antibodies whilst maintaining sensitivity to antiviral drugs targeting the polymerase. Omicron has shifted cellular tropism away from TMPRSS2 expressing cells that are enriched in cells found in the lower respiratory and GI tracts, with implications for altered pathogenesis.

6.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-438288

RESUMEN

During the current SARS-CoV-2 pandemic that is devastating the modern societies worldwide, many variants that naturally acquire multiple mutations have emerged. Emerging mutations can affect viral properties such as infectivity and immune resistance. Although the sensitivity of naturally occurring SARS-CoV-2 variants to humoral immunity has recently been investigated, that to human leukocyte antigen (HLA)-restricted cellular immunity remains unaddressed. Here we demonstrate that two recently emerging mutants in the receptor binding domain of the SARS-CoV-2 spike protein, L452R (in B.1.427/429) and Y453F (in B.1.298), can escape from the HLA-24-restricted cellular immunity. These mutations reinforce the affinity to viral receptor ACE2, and notably, the L452R mutation increases protein stability, viral infectivity, and potentially promotes viral replication. Our data suggest that the HLA-restricted cellular immunity potentially affects the evolution of viral phenotypes, and the escape from cellular immunity can be a further threat of the SARS-CoV-2 pandemic. Graphical Abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=198 SRC="FIGDIR/small/438288v1_ufig1.gif" ALT="Figure 1"> View larger version (45K): org.highwire.dtl.DTLVardef@153428forg.highwire.dtl.DTLVardef@136ca5aorg.highwire.dtl.DTLVardef@1ee490org.highwire.dtl.DTLVardef@2fe478_HPS_FORMAT_FIGEXP M_FIG C_FIG

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...