Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920028

RESUMEN

Nephronophthisis (NPHP) is a ciliopathy characterized by renal fibrosis and cyst formation, and accounts for a significant portion of end stage renal disease in children and young adults. Currently, no targeted therapy is available for this disease. INVS/NPHP2 is one of the over 25 NPHP genes identified to date. In mouse, global knockout of Invs leads to renal fibrosis and cysts. However, the precise contribution of different cell types and the relationship between epithelial cysts and interstitial fibrosis remains undefined. Here, we generated and characterized cell-type-specific knockout mouse models of Invs, investigated the impact of removing cilia genetically on phenotype severity in Invs mutants and evaluated the impact of the histone deacetylase inhibitor valproic acid (VPA) on Invs mutants. Epithelial-specific knockout of Invs in Invsflox/flox;Cdh16-Cre mutant mice resulted in renal cyst formation and severe stromal fibrosis, while Invsflox/flox;Foxd1-Cre mice, where Invs is deleted in stromal cells, displayed no observable phenotypes up to the young adult stage, highlighting a significant role of epithelial-stromal crosstalk. Further, increased cell proliferation and myofibroblast activation occurred early during disease progression and preceded detectable cyst formation in the Invsflox/flox;Cdh16-Cre kidney. Moreover, concomitant removal of cilia partially suppressed the phenotypes of the Invsflox/flox;Cdh16-Cre mutant kidney, supporting a significant interaction of cilia and Invs function in vivo. Finally, VPA reduced cyst burden, decreased cell proliferation and ameliorated kidney function decline in Invs mutant mice. Our results reveal the critical role of renal epithelial cilia in NPHP and suggest the possibility of repurposing VPA for NPHP treatment.


One of the most common causes of kidney failure in children and young adults is nephronophthisis. This genetic disease causes cysts and tissue scarring in the kidneys, leading to excessive urine production and extreme tiredness. Unfortunately, there is no targeted therapy available for this condition. Scientists do not fully understand how genetic mutations lead to these symptoms. Previous research in mice showed that blocking the gene for a protein called INVS recreated signs similar to nephronophthisis. However, it is not clear how the different cell types in the kidneys are involved. Previous results suggest that cilia, the hair-like projections on the surface of cells, could be involved in developing cysts in nephronophthisis. To understand how the disease is driven, Li, Xu et al. created a range of genetically modified mice with INVS missing in different cell types. When INVS was removed from cells that line the kidney tubules, the mice developed scarring and cysts. By contrast, there were no symptoms when connective tissue cells were lacking INVS. When Li, Xu et al. removed the cilia from the cells, it helped to reduce the negative impact of the loss of INVS. In addition, a drug called valproic acid reduced the cysts and tissue scarring, and slowed kidney decline in the mutant mice, suggesting the possibility of repurposing this drug for nephronophthisis treatment. These results could help researchers to study other conditions that are influenced by the health of cilia. Future work on nephronophthisis will be needed to understand how INVS causes the disease and the mechanism for the benefits of valproic acid.


Asunto(s)
Quistes , Enfermedades Renales Quísticas , Enfermedades Renales Poliquísticas , Ratones , Animales , Factores de Transcripción/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/metabolismo , Enfermedades Renales Quísticas/patología , Enfermedades Renales Poliquísticas/metabolismo , Fenotipo , Ratones Noqueados , Células Epiteliales/metabolismo , Fibrosis , Cilios/metabolismo , Cadherinas/metabolismo
2.
Proc Natl Acad Sci U S A ; 116(28): 14049-14054, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31235600

RESUMEN

Genomic analyses of patients with congenital heart disease (CHD) have identified significant contribution from mutations affecting cilia genes and chromatin remodeling genes; however, the mechanism(s) connecting chromatin remodeling to CHD is unknown. Histone H2B monoubiquitination (H2Bub1) is catalyzed by the RNF20 complex consisting of RNF20, RNF40, and UBE2B. Here, we show significant enrichment of loss-of-function mutations affecting H2Bub1 in CHD patients (enrichment 6.01, P = 1.67 × 10-03), some of whom had abnormal laterality associated with ciliary dysfunction. In Xenopus, knockdown of rnf20 and rnf40 results in abnormal heart looping, defective development of left-right (LR) asymmetry, and impaired cilia motility. Rnf20, Rnf40, and Ube2b affect LR patterning and cilia synergistically. Examination of global H2Bub1 level in Xenopus embryos shows that H2Bub1 is developmentally regulated and requires Rnf20. To examine gene-specific H2Bub1, we performed ChIP-seq of mouse ciliated and nonciliated tissues and showed tissue-specific H2Bub1 marks significantly enriched at cilia genes including the transcription factor Rfx3 Rnf20 knockdown results in decreased levels of rfx3 mRNA in Xenopus, and exogenous rfx3 can rescue the Rnf20 depletion phenotype. These data suggest that Rnf20 functions at the Rfx3 locus regulating cilia motility and cardiac situs and identify H2Bub1 as an upstream transcriptional regulator controlling tissue-specific expression of cilia genes. Our findings mechanistically link the two functional gene ontologies that have been implicated in human CHD: chromatin remodeling and cilia function.


Asunto(s)
Cardiopatías Congénitas/genética , Corazón/crecimiento & desarrollo , Factores de Transcripción del Factor Regulador X/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Movimiento Celular/genética , Proliferación Celular/genética , Ensamble y Desensamble de Cromatina/genética , Cilios/genética , Cilios/metabolismo , Cilios/patología , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Regulación Neoplásica de la Expresión Génica/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Histonas/genética , Histonas/metabolismo , Humanos , Mutación con Pérdida de Función/genética , Ratones , Transducción de Señal/genética , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitinación/genética , Xenopus/genética , Xenopus/crecimiento & desarrollo
3.
Nature ; 504(7480): 456-9, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24226769

RESUMEN

Heterotaxy is a disorder of left-right body patterning, or laterality, that is associated with major congenital heart disease. The aetiology and mechanisms underlying most cases of human heterotaxy are poorly understood. In vertebrates, laterality is initiated at the embryonic left-right organizer, where motile cilia generate leftward flow that is detected by immotile sensory cilia, which transduce flow into downstream asymmetric signals. The mechanism that specifies these two cilia types remains unknown. Here we show that the N-acetylgalactosamine-type O-glycosylation enzyme GALNT11 is crucial to such determination. We previously identified GALNT11 as a candidate disease gene in a patient with heterotaxy, and now demonstrate, in Xenopus tropicalis, that galnt11 activates Notch signalling. GALNT11 O-glycosylates human NOTCH1 peptides in vitro, thereby supporting a mechanism of Notch activation either by increasing ADAM17-mediated ectodomain shedding of the Notch receptor or by modification of specific EGF repeats. We further developed a quantitative live imaging technique for Xenopus left-right organizer cilia and show that Galnt11-mediated Notch1 signalling modulates the spatial distribution and ratio of motile and immotile cilia at the left-right organizer. galnt11 or notch1 depletion increases the ratio of motile cilia at the expense of immotile cilia and produces a laterality defect reminiscent of loss of the ciliary sensor Pkd2. By contrast, Notch overexpression decreases this ratio, mimicking the ciliopathy primary ciliary dyskinesia. Together our data demonstrate that Galnt11 modifies Notch, establishing an essential balance between motile and immotile cilia at the left-right organizer to determine laterality, and reveal a novel mechanism for human heterotaxy.


Asunto(s)
Tipificación del Cuerpo , Cilios/fisiología , Síndrome de Heterotaxia/genética , N-Acetilgalactosaminiltransferasas/metabolismo , Receptor Notch1/metabolismo , Transducción de Señal , Proteínas de Xenopus/metabolismo , Proteínas ADAM/metabolismo , Proteína ADAM17 , Secuencia de Aminoácidos , Animales , Cilios/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Glicosilación , Humanos , Ratones , Datos de Secuencia Molecular , N-Acetilgalactosaminiltransferasas/deficiencia , N-Acetilgalactosaminiltransferasas/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Receptor Notch1/química , Receptor Notch1/deficiencia , Receptor Notch1/genética , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/deficiencia , Proteínas de Xenopus/genética
4.
Dev Biol ; 363(1): 166-78, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22233545

RESUMEN

Motile cilia create asymmetric fluid flow in the evolutionarily conserved ciliated organ of asymmetry (COA) and play a fundamental role in establishing the left-right (LR) axis in vertebrate embryos. The transcriptional control of the large group of genes that encode proteins that contribute to ciliary structure and function remains poorly understood. In this study we find that the winged helix transcription factor Rfx2 is expressed in motile cilia in mouse and zebrafish embryos. Morpholino knockdown of Rfx2 function in the whole embryo or specifically in cells of the zebrafish COA (Kupffer's Vesicle, KV) leads to reduced KV cilia length and perturbations in LR asymmetry. LR patterning defects include randomization of the early asymmetric Nodal signaling pathway genes southpaw, lefty1 and lefty2 and subsequent reversals in the organ primordia of the heart and gut. Rfx2 is also required for ciliogenesis in zebrafish pronephric duct. We further show that by restoring Left-Right dynein (LRD) expression and motility specifically in a subset of ciliated cells of the mouse COA (posterior notochord, PNC), we can restore fluid flow, asymmetric expression of Pitx2 and partially rescue situs defects.


Asunto(s)
Tipificación del Cuerpo/genética , Cilios/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Transgenes/genética , Animales , Cilios/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Inmunohistoquímica , Hibridación in Situ , Factores de Determinación Derecha-Izquierda/genética , Factores de Determinación Derecha-Izquierda/metabolismo , Factores de Determinación Derecha-Izquierda/fisiología , Masculino , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Factores de Transcripción del Factor Regulador X , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Estrés Mecánico , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Pez Cebra/embriología , Pez Cebra/genética
5.
Cell ; 114(1): 61-73, 2003 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-12859898

RESUMEN

The vertebrate body plan has conserved handed left-right (LR) asymmetry that is manifested in the heart, lungs, and gut. Leftward flow of extracellular fluid at the node (nodal flow) is critical for normal LR axis determination in the mouse. Nodal flow is generated by motile node cell monocilia and requires the axonemal dynein, left-right dynein (lrd). In the absence of lrd, LR determination becomes random. The cation channel polycystin-2 is also required to establish LR asymmetry. We show that lrd localizes to a centrally located subset of node monocilia, while polycystin-2 is found in all node monocilia. Asymmetric calcium signaling appears at the left margin of the node coincident with nodal flow. These observations suggest that LR asymmetry is established by an entirely ciliary mechanism: motile, lrd-containing monocilia generate nodal flow, and nonmotile polycystin-2 containing cilia sense nodal flow initiating an asymmetric calcium signal at the left border of the node.


Asunto(s)
Tipificación del Cuerpo/fisiología , Cilios/metabolismo , Espacio Extracelular/metabolismo , Lateralidad Funcional/fisiología , Gástrula/metabolismo , Organizadores Embrionarios/embriología , Animales , Dineínas Axonemales , Señalización del Calcio/fisiología , Cilios/ultraestructura , Dineínas/deficiencia , Dineínas/genética , Células Epiteliales/citología , Células Epiteliales/metabolismo , Femenino , Feto , Gástrula/citología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mutación/genética , Organizadores Embrionarios/citología , Organizadores Embrionarios/metabolismo , Embarazo , Proteínas Recombinantes de Fusión , Canales Catiónicos TRPP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA