Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 7894, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38036567

RESUMEN

Coronavirus replication is associated with the remodeling of cellular membranes, resulting in the formation of double-membrane vesicles (DMVs). A DMV-spanning pore was identified as a putative portal for viral RNA. However, the exact components and the structure of the SARS-CoV-2 DMV pore remain to be determined. Here, we investigate the structure of the DMV pore by in situ cryo-electron tomography combined with subtomogram averaging. We identify non-structural protein (nsp) 3 and 4 as minimal components required for the formation of a DMV-spanning pore, which is dependent on nsp3-4 proteolytic cleavage. In addition, we show that Mac2-Mac3-DPUP-Ubl2 domains are critical for nsp3 oligomerization and crown integrity which influences membrane curvature required for biogenesis of DMVs. Altogether, SARS-CoV-2 nsp3-4 have a dual role by driving the biogenesis of replication organelles and assembly of DMV-spanning pores which we propose here to term replicopores.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicación Viral , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Orgánulos/metabolismo
2.
Cell ; 186(22): 4834-4850.e23, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37794589

RESUMEN

Regulation of viral RNA biogenesis is fundamental to productive SARS-CoV-2 infection. To characterize host RNA-binding proteins (RBPs) involved in this process, we biochemically identified proteins bound to genomic and subgenomic SARS-CoV-2 RNAs. We find that the host protein SND1 binds the 5' end of negative-sense viral RNA and is required for SARS-CoV-2 RNA synthesis. SND1-depleted cells form smaller replication organelles and display diminished virus growth kinetics. We discover that NSP9, a viral RBP and direct SND1 interaction partner, is covalently linked to the 5' ends of positive- and negative-sense RNAs produced during infection. These linkages occur at replication-transcription initiation sites, consistent with NSP9 priming viral RNA synthesis. Mechanistically, SND1 remodels NSP9 occupancy and alters the covalent linkage of NSP9 to initiating nucleotides in viral RNA. Our findings implicate NSP9 in the initiation of SARS-CoV-2 RNA synthesis and unravel an unsuspected role of a cellular protein in orchestrating viral RNA production.


Asunto(s)
COVID-19 , ARN Viral , Humanos , COVID-19/metabolismo , Endonucleasas/metabolismo , ARN Viral/metabolismo , SARS-CoV-2/genética , Replicación Viral
3.
Commun Biol ; 6(1): 1057, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853181

RESUMEN

Free-electron lasers (FEL) are revolutionizing X-ray-based structural biology methods. While protein crystallography is already routinely performed at FELs, Small Angle X-ray Scattering (SAXS) studies of biological macromolecules are not as prevalent. SAXS allows the study of the shape and overall structure of proteins and nucleic acids in solution, in a quasi-native environment. In solution, chemical and biophysical parameters that have an influence on the structure and dynamics of molecules can be varied and their effect on conformational changes can be monitored in time-resolved XFEL and SAXS experiments. We report here the collection of scattering form factors of proteins in solution using FEL X-rays. The form factors correspond to the scattering signal of the protein ensemble alone; the scattering contributions from the solvent and the instrument are separately measured and accurately subtracted. The experiment was done using a liquid jet for sample delivery. These results pave the way for time-resolved studies and measurements from dilute samples, capitalizing on the intense and short FEL X-ray pulses.


Asunto(s)
Electrones , Proteínas , Dispersión del Ángulo Pequeño , Rayos X , Difracción de Rayos X , Proteínas/química , Rayos Láser
4.
Cell Host Microbe ; 31(4): 616-633.e20, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37003257

RESUMEN

Interferon-induced transmembrane protein 3 (IFITM3) inhibits the entry of numerous viruses through undefined molecular mechanisms. IFITM3 localizes in the endosomal-lysosomal system and specifically affects virus fusion with target cell membranes. We found that IFITM3 induces local lipid sorting, resulting in an increased concentration of lipids disfavoring viral fusion at the hemifusion site. This increases the energy barrier for fusion pore formation and the hemifusion dwell time, promoting viral degradation in lysosomes. In situ cryo-electron tomography captured IFITM3-mediated arrest of influenza A virus membrane fusion. Observation of hemifusion diaphragms between viral particles and late endosomal membranes confirmed hemifusion stabilization as a molecular mechanism of IFITM3. The presence of the influenza fusion protein hemagglutinin in post-fusion conformation close to hemifusion sites further indicated that IFITM3 does not interfere with the viral fusion machinery. Collectively, these findings show that IFITM3 induces lipid sorting to stabilize hemifusion and prevent virus entry into target cells.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Gripe Humana/metabolismo , Internalización del Virus , Virus de la Influenza A/metabolismo , Membrana Celular/metabolismo , Lípidos , Proteínas de la Membrana/metabolismo , Proteínas de Unión al ARN/metabolismo
5.
J Appl Crystallogr ; 54(Pt 1): 7-21, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33833637

RESUMEN

The science of X-ray free-electron lasers (XFELs) critically depends on the performance of the X-ray laser and on the quality of the samples placed into the X-ray beam. The stability of biological samples is limited and key biomolecular transformations occur on short timescales. Experiments in biology require a support laboratory in the immediate vicinity of the beamlines. The XBI BioLab of the European XFEL (XBI denotes XFEL Biology Infrastructure) is an integrated user facility connected to the beamlines for supporting a wide range of biological experiments. The laboratory was financed and built by a collaboration between the European XFEL and the XBI User Consortium, whose members come from Finland, Germany, the Slovak Republic, Sweden and the USA, with observers from Denmark and the Russian Federation. Arranged around a central wet laboratory, the XBI BioLab provides facilities for sample preparation and scoring, laboratories for growing prokaryotic and eukaryotic cells, a Bio Safety Level 2 laboratory, sample purification and characterization facilities, a crystallization laboratory, an anaerobic laboratory, an aerosol laboratory, a vacuum laboratory for injector tests, and laboratories for optical microscopy, atomic force microscopy and electron microscopy. Here, an overview of the XBI facility is given and some of the results of the first user experiments are highlighted.

6.
Anaerobe ; 50: 22-31, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29408597

RESUMEN

One of the key regulators ensuring proper Z-ring placement in rod-shaped bacteria is the Min system. It does so by creating a concentration gradient of the MinC septation inhibitor along the cell axis. In Escherichia coli, this gradient is established by a MinE-mediated pole-to-pole oscillation of the MinCDE complex. In Bacillus subtilis, the creation of an inhibitory gradient relies on the MinJ and DivIVA pair of topological determinants, which target MinCD to the newly formed cell poles. Introducing the E. coli oscillating Min system into B. subtilis leads to a sporulation defect, suggesting that oscillation is incompatible with sporulation. However, Clostridia, close endospore-forming relatives of Bacilli, do encode oscillating Min homologues in various combinations together with homologues from the less dynamic B. subtilis Min system. Here we address the questions of how these two systems could exist side-by-side and how they influence one another by studying the Clostridium beijerinckii and Clostridium difficile Min systems. The toolbox of genetic manipulations and fluorescent protein fusions in Clostridia is limited, therefore B. subtilis and E. coli were chosen as heterologous systems for studying these proteins. In B. subtilis, MinD and DivIVA interact through MinJ; here, however, we discovered that the MinD and DivIVA proteins of both C. difficile, and C. beijerinckii, interact directly, which is surprising in the latter case, since that organism also encodes a MinJ homologue. We confirm this interaction using both in vitro and in vivo methods. We also show that C. beijerinckii MinJ is probably not in direct contact with DivIVACb and, unlike B. subtilis MinJ, does not mediate the MinDCb and DivIVACb interaction. Our results suggest that the Clostridia Min system uses a new mechanism of function.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridium/fisiología , Proteínas Bacterianas/genética , División Celular/genética , Genotipo , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas
7.
Microbiologyopen ; 5(3): 387-401, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26817670

RESUMEN

In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Bacillus subtilis/metabolismo , División Celular/fisiología , Clostridioides difficile/crecimiento & desarrollo , Clostridioides difficile/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , División Celular/genética , Clostridioides difficile/genética , Proteínas del Citoesqueleto/metabolismo , Escherichia coli/crecimiento & desarrollo
8.
Front Microbiol ; 6: 808, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300872

RESUMEN

Programmed cell death in bacteria is generally associated with two-component toxin-antitoxin systems. The SpoIIS toxin-antitoxin system, consisting of a membrane-bound SpoIISA toxin and a small, cytosolic antitoxin SpoIISB, was originally identified in Bacillus subtilis. In this work we describe the Bacillus cereus SpoIIS system which is a three-component system, harboring an additional gene spoIISC. Its protein product serves as an antitoxin, and similarly as SpoIISB, is able to bind SpoIISA and abolish its toxic effect. Our results indicate that SpoIISC seems to be present not only in B. cereus but also in other Bacilli containing a SpoIIS toxin-antitoxin system. In addition, we show that B. cereus SpoIISA can form higher oligomers and we discuss the possible role of this multimerization for the protein's toxic function.

9.
FEMS Microbiol Lett ; 358(2): 180-7, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25039482

RESUMEN

SpoIISAB is a toxin-antitoxin module encoded on the chromosomes of Bacillus subtilis and related Bacilli species. The SpoIISA toxin was previously shown to target the cytoplasmic membrane and to induce lysis in both B. subtilis and Escherichia coli; however, the precise manner of SpoIISA toxicity remains unknown. In this work, we focused on the N-terminal, transmembrane domain of SpoIISA and verified the prediction of its topology. Using truncated SpoIISA constructs, we show that the entire transmembrane domain is required for its toxicity. Moreover, we propose that the oligomerization of this transmembrane domain is crucial for activity of SpoIISA, possibly by forming a pore-like structure.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Bacillus subtilis/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Análisis Mutacional de ADN , Escherichia coli/genética , Escherichia coli/fisiología , Viabilidad Microbiana/efectos de los fármacos , Conformación Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...