Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 15775, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737323

RESUMEN

Anopheles arabiensis and Anopheles funestus sensu stricto mosquitoes are major East African malaria vectors. Understanding their dispersal and population structure is critical for developing effective malaria control tools. Three mark-release-recapture (MRR) experiments were conducted for 51 nights to assess daily survival and flight range of An. arabiensis and An. funestus mosquitoes in south-eastern, Tanzania. Mosquitoes were marked with a fluorescent dye as they emerged from breeding sites via a self-marking device. Mosquitoes were collected indoors and outdoors using human landing catches (HLC) and Centers for Disease Control and Prevention light traps (CDC-LT). In total, 4210 An. arabiensis and An. funestus were collected with 316 (7.5%) marked and recaptured (MR). Daily mean MR was 6.8, standard deviation (SD ± 7.6) for An. arabiensis and 8.9 (SD ± 8.3) for An. funestus. Probability of daily survival was 0.76 for An. arabiensis and 0.86 for An. funestus translating into average life expectancy of 3.6 days for An. arabiensis and 6.5 days for An. funestus. Dispersal distance was 654 m for An. arabiensis and 510 m for An. funestus. An. funestus life expectancy was substantially longer than that of An. arabiensis. The MRR method described here could be routinely utilized when evaluating the impact of new vector control tools on mosquito survival.


Asunto(s)
Anopheles , Estados Unidos , Humanos , Animales , Tanzanía , Mosquitos Vectores , Centers for Disease Control and Prevention, U.S. , Esperanza de Vida
2.
Parasit Vectors ; 15(1): 124, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410250

RESUMEN

BACKGROUND: Insecticide-treated net (ITN) durability is evaluated using longitudinal bioefficacy and fabric integrity sampling post-distribution. Interceptor® G2 was developed for resistance management and contains two adulticides: alpha-cypermethrin and chlorfenapyr; it is a pro-insecticide that is metabolized into its active form by mosquito-detoxifying enzymes and may be enhanced when the mosquito is physiologically active. To elucidate the impact of bioassay modality, mosquito exposures of the alphacypermethrin ITN Interceptor® and dual adulticide Interceptor® G2 were investigated. METHODS: This study evaluated the performance of Interceptor® G2 compared to Interceptor® against local strains of mosquitoes in Tanzania. Unwashed and 20× times washed nets were tested. Efficacy of ITNs was measured by four bioassay types: (1) World Health Organisation (WHO) cone test (cone), (2) WHO tunnel test (tunnel), (3) Ifakara ambient chamber test (I-ACT) and (4) the WHO gold standard experimental hut test (hut). Hut tests were conducted against free-flying wild pyrethroid metabolically resistant Anopheles arabiensis and Culex quinquefasciatus. Cone, tunnel and I-ACT bioassays used laboratory-reared metabolically resistant An. arabiensis and Cx. quinquefasciatus and pyrethroid susceptible Anopheles gambiae sensu stricto and Aedes aegypti. RESULTS: Against resistant strains, superiority of Interceptor® G2 over Interceptor® was observed in all "free-flying bioassays". In cone tests (which restrict mosquito flight), superiority of Interceptor® over Interceptor® G2 was recorded. Mortality of unwashed Interceptor® G2 among An. arabiensis was lowest in hut tests at 42.9% (95% CI: 37.3-48.5), although this increased to 66.7% (95% CI: 47.1-86.3) by blocking hut exit traps so mosquitoes presumably increased frequencies of contact with ITNs. Higher odds of mortality were consistently observed in Interceptor® G2 compared to Interceptor® in "free-flying" bioassays using An. arabiensis: tunnel (OR = 1.42 [95% CI:1.19-1.70], p < 0.001), I-ACT (OR = 1.61 [95% CI: 1.05-2.49], p = 0.031) and hut (OR = 2.53 [95% CI: 1.96-3.26], p < 0.001). Interceptor® and Interceptor® G2 showed high blood-feeding inhibition against all strains. CONCLUSION: Both free-flying laboratory bioassays (WHO Tunnel and I-ACT) consistently measured similarly, and both predicted the results of the experimental hut test. For bioefficacy monitoring and upstream product evaluation of ITNs in situ, the I-ACT may provide an alternative bioassay modality with improved statistical power. Interceptor G2® outperformed Interceptor ® against pyrethroid-resistant strains, demonstrating the usefulness of chlorfenapyr in mitigation of malaria.


Asunto(s)
Anopheles , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Resistencia a los Insecticidas , Insecticidas/farmacología , Macrólidos , Malaria/prevención & control , Control de Mosquitos/métodos , Piretrinas/farmacología , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA