Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(11): 5794-5801, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38426356

RESUMEN

The discovery of ferroelectricity in two-dimensional van der Waals materials has sparked enormous interest from the scientific community, due to its possible applications in next-generation nanoelectronic devices, such as random-access memory devices, digital signal processors, and solar cells, among others. In the present study, we used vapor phase deposition to synthesize ultrathin germanium sulfide nano-flakes on a highly oriented pyrolytic graphite substrate. Nanostructures of variable thicknesses were characterized using scanning tunneling microscopy and spectroscopy. Tunneling currents under forward and backward biases were measured as a function of nano-flake thickness. Remarkably, we clearly observed a hysteresis pattern, which we attributed to surface ferroelectric behavior, consistent with the screening conditions of polarization charges. The effect increases as the number of layers is reduced. This experimental result may be directly applicable to miniaturized memory devices, given the two-dimensional nature of this effect.

2.
ACS Appl Mater Interfaces ; 16(1): 1650-1658, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38117664

RESUMEN

The prediction of semiconductor device performance is a persistent challenge in materials science, and the ability to anticipate useful specifications prior to construction is crucial for enhancing the overall efficiency. In this study, we investigate the constituents of a solar cell by employing scanning tunneling microscopy (STM) and spectroscopy (STS). Through our observations, we identify a spatial distribution of the dopant type in thin films of materials that were designed to present major p-doping for germanium sulfide (GeS) and dominant n-doping for tin disulfide (SnS2). By generating separate STS maps for each semiconductor film and conducting a statistical analysis of the gap and doping distribution, we determine intrinsic limitations for the solar cell efficiency that must be understood prior to processing. Subsequently, we fabricate a solar cell utilizing these materials (GeS and SnS2) via vapor phase deposition and carry out a characterization using standard J-V curves under both dark/illuminated irradiance conditions. Our devices corroborate the expected reduced efficiency due to doping fluctuation but exhibit stable photocurrent responses. As originally planned, quantum efficiency measurements reveal that the peak efficiency of our solar cell coincides with the range where the standard silicon solar cells sharply decline. Our STS method is suggested as a prequel to device development in novel material junctions or deposition processes where fluctuations of doping levels are retrieved due to intrinsic material characteristics such as the occurrence of defects, roughness, local chemical segregation, and faceting or step bunching.

3.
Nanotechnology ; 34(41)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37413972

RESUMEN

Rolled-up tubes based on released III-V heterostructures have been extensively studied and established as optical resonators in the last two decades. In this review, we discuss how light emitters (quantum wells and quantum dots) are influenced by the inherently asymmetric strain state of these tubes. Therefore, we briefly review whispering gallery mode resonators built from rolled-up III-V heterostructures. The curvature and its influence over the diameter of the rolled-up micro- and nanotubes are discussed, with emphasis on the different possible strain states that can be produced. Experimental techniques that access structural parameters are essential to obtain a complete and correct image of the strain state for the emitters inside the tube wall. In order to unambiguously extract such strain state, we discuss x-ray diffraction results in these systems, providing a much clearer scenario compared to a sole tube diameter analysis, which provides only a first indication of the lattice relaxation in a given tube. Further, the influence of the overall strain lattice state on the band structure is examined via numerical calculations. Finally, experimental results for the wavelength shift of emissions due to the tube strain state are presented and compared with theoretical calculations available in literature, showing that the possibility to use rolled-up tubes to permanently strain engineer the optical properties of build-in emitters is a consistent method to induce the appearance of electronic states unachievable by direct growth methods.

4.
Biomed Pharmacother ; 165: 115034, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356372

RESUMEN

Liposomes composed of a rigid bilayer have high plasma stability; however, they can be challenged in efficacy due to complications in releasing the encapsulated drug as well as being internalized by the tumor cell. On the other hand, fusogenic liposomes may fuse with the plasmatic membrane and release encapsulated material directly into the cytoplasm. In a previous study, fusogenic liposomes composed of alpha-tocopheryl succinate (TS) and doxorubicin (DOX) were developed (pHSL-TS-DOX). These stabilized tumor growth and reduced toxicity compared to a commercial formulation. In the present study, we investigated whether cellular uptake or DOX accumulation in the tumor could justify the better performance of the pHSL-TS-DOX formulation. Release, deformability, and DOX plasmatic concentration studies were also carried out. pHSL-TS-DOX showed an adequate release profile and demonstrated characteristics of a deformable formulation. Data from apoptosis, cell cycle, and nuclear morphology studies have shown that the induction of cell death caused by pHSL-TS-DOX occurred more quickly. Higher DOX cellular uptake and tumor accumulation were observed when pHSL-TS-DOX was administered, demonstrating better drug delivery capacity. Therefore, better DOX uptake as well as tumor accumulation explain the great antitumor activity previously demonstrated for this formulation.


Asunto(s)
Neoplasias de la Mama , Liposomas , Ratones , Animales , Humanos , Femenino , Línea Celular Tumoral , Doxorrubicina/farmacología , alfa-Tocoferol/farmacología , Succinatos , Neoplasias de la Mama/tratamiento farmacológico
5.
J Control Release ; 350: 228-243, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35995297

RESUMEN

Vectorized small interfering RNAs (siRNAs) are widely used to induce gene silencing. Among the delivery systems used, lipid-based particles are the most effective. Our objective was the development of novel lipid-polymer hybrid nanoparticles, from lipoplexes (complexes of cationic lipid and siRNAs), and poly (lactic-co-glycolic acid) (PLGA), using a simple modified nanoprecipitation method. Due to their morphology, we called these hybrid nanoparticles Spheroplexes. We elucidated their structure using several physico-chemical techniques and showed that they are composed of a hydrophobic PLGA matrix, surrounded by a lipid envelope adopting a lamellar structure, in which the siRNA is complexed, and they retain surface characteristics identical to the starting nanoparticles, i.e. lipoplexes siRNA. We analyzed the composition of the particle population and determined the final percentage of spheroplexes within this population, 80 to 85% depending on the preparation conditions, using fluorescent markers and the ability of flow cytometry to detect nanometric particles (approximately 200 nm). Finally, we showed that spheroplexes are very stable particles and more efficient than siRNA lipoplexes for the delivery of siRNA to cultured cells. We administered spheroplexes contain siRNAs targeting TNF-α to mice with ulcerative colitis induced by dextran sulfate and our results indicate a disease regression effect with a response probably mediated by their uptake by macrophages / monocytes at the level of lamina propria of the colon. The efficacy of decreased level of TNF-α in vivo seemed to be an association of spheroplexes polymer-lipid composition and the specific siRNA. These results demonstrate that spheroplexes are a promising hybrid nanoparticle for the oral delivery of siRNA to the colon.


Asunto(s)
Nanopartículas , Factor de Necrosis Tumoral alfa , Animales , Cationes/química , Sulfato de Dextran , Lípidos/química , Liposomas , Ratones , Nanopartículas/química , Polímeros/química , ARN Interferente Pequeño
6.
Small ; 18(1): e2105424, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34786844

RESUMEN

Reconfiguration of amorphous complex oxides provides a readily controllable source of stress that can be leveraged in nanoscale assembly to access a broad range of 3D geometries and hybrid materials. An amorphous SrTiO3 layer on a Si:B/Si1- x Gex :B heterostructure is reconfigured at the atomic scale upon heating, exhibiting a change in volume of ≈2% and accompanying biaxial stress. The Si:B/Si1- x Gex :B bilayer is fabricated by molecular beam epitaxy, followed by sputter deposition of SrTiO3 at room temperature. The processes yield a hybrid oxide/semiconductor nanomembrane. Upon release from the substrate, the nanomembrane rolls up and has a curvature determined by the stress in the epitaxially grown Si:B/Si1- x Gex :B heterostructure. Heating to 600 °C leads to a decrease of the radius of curvature consistent with the development of a large compressive biaxial stress during the reconfiguration of SrTiO3 . The control of stresses via post-deposition processing provides a new route to the assembly of complex-oxide-based heterostructures in 3D geometry. The reconfiguration of metastable mechanical stressors enables i) synthesis of various types of strained superlattice structures that cannot be fabricated by direct growth and ii) technologies based on strain engineering of complex oxides via highly scalable lithographic processes and on large-area semiconductor substrates.

7.
J Fluoresc ; 31(6): 1855-1862, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34519937

RESUMEN

Investigation of temperature-dependent photoluminescent properties of potassium perylene-3,4,9,10-tetracarboxylate (K4PTC), a molecule with no internal rotational degrees of freedom, shows aggregation-induced enhanced emission at room temperature. The different excitonic emission processes are dependent of temperature, some of which quenches in an intermediate temperature range (from 50 to 150 K). The exciton excited states switching phenomenon from "dark" to "bright" states is observed and its explained using Herzberg-Teller selection rule. K4PTC is a molecule comparable to the size of its precursor, perylene-3,4,9,10-tetracarboxylic anhydride (PTCDA) and is highly soluble in water, contrary to PTCDA, which is poorly soluble in most solvents. Powder x-ray diffraction measurements corroborate a lesser degree of ordering of bulk K4PTC compared to bulk PTCDA. The green luminescent molecule could, in principle, be used as a biomarker, or in photodynamic therapy, if further studies show relatively low toxicity.

8.
Nat Commun ; 12(1): 1995, 2021 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-33790286

RESUMEN

Hyperbolic phonon polaritons have recently attracted considerable attention in nanophotonics mostly due to their intrinsic strong electromagnetic field confinement, ultraslow polariton group velocities, and long lifetimes. Here we introduce tin oxide (SnO2) nanobelts as a photonic platform for the transport of surface and volume phonon polaritons in the mid- to far-infrared frequency range. This report brings a comprehensive description of the polaritonic properties of SnO2 as a nanometer-sized dielectric and also as an engineered material in the form of a waveguide. By combining accelerator-based IR-THz sources (synchrotron and free-electron laser) with s-SNOM, we employed nanoscale far-infrared hyper-spectral-imaging to uncover a Fabry-Perot cavity mechanism in SnO2 nanobelts via direct detection of phonon-polariton standing waves. Our experimental findings are accurately supported by notable convergence between theory and numerical simulations. Thus, the SnO2 is confirmed as a natural hyperbolic material with unique photonic properties essential for future applications involving subdiffractional light traffic and detection in the far-infrared range.

9.
Langmuir ; 37(12): 3685-3693, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33720737

RESUMEN

Self-assembled molecules exhibit key functionalities for the development of novel technologies and applications. Usually, molecular systems that exhibit long-range positional order are employed in their pure form. In this work, we observe that a combination of an amphiphilic molecule, tetradecyl-phosphonic acid (TPA), and a diphosphonate molecule with a similar length, 1,10-decyldiphosphonic acid (DdPA), induces distinct long-range ordered structures depending on the relative volume of dilutions used for drop coating. Starting from 0.2 mM diluted ethanol solutions of each molecule and combining both in distinct proportions that range from 1:20 to 20:1, we were able to identify periodic molecular structures that consist of three and five molecules of TPA and DdPA arranged in symmetries and were retrieved by synchrotron X-ray diffraction. The possibility of deterministically building up such structures can be further developed to induce surface and bulk behaviors that better suit applications such as coatings for chemical and biological studies, as well as to engineer layers used in organic electronic applications.

10.
Beilstein J Nanotechnol ; 12: 139-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33564609

RESUMEN

The aim of this work is to determine the varying dielectric constant of a biological nanostructured system via electrostatic force microscopy (EFM) and to show how this method is useful to study natural photonic crystals. We mapped the dielectric constant of the cross section of the posterior wing of the damselfly Chalcopteryx rutilans with nanometric resolution. We obtained structural information on its constitutive nanolayers and the absolute values of their dielectric constant. By relating the measured profile of the static dielectric constant to the profile of the refractive index in the visible range, combined with optical reflectance measurements and simulation, we were able to describe the origin of the strongly iridescent wing colors of this Amazonian rainforest damselfly. The method we demonstrate here should be useful for the study of other biological nanostructured systems.

11.
Biomed Pharmacother ; 134: 110952, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33348307

RESUMEN

pH-sensitive liposomes are interesting carriers for drug-delivery, undertaking rapid bilayer destabilization in response to pH changes, allied to tumor accumulation, a desirable behavior in the treatment of cancer cells. Previously, we have shown that pH-sensitive liposomes accumulate in tumor tissues of mice, in which an acidic environment accelerates drug delivery. Ultimately, these formulations can be internalized by tumor cells and take the endosome-lysosomal route. However, the mechanism of doxorubicin release and intracellular traffic of pH-sensitive liposomes remains unclear. To investigate the molecular mechanisms underlying the intracellular release of doxorubicin from pH-sensitive liposomes, we followed HeLa cells viability, internalization, intracellular trafficking, and doxorubicin's intracellular delivery mechanisms from pH-sensitive (SpHL-DOX) and non-pH-sensitive (nSpHL-DOX) formulations. We found that SpHL-DOX has faster internalization kinetics and intracellular release of doxorubicin, followed by strong nuclear accumulation compared to nSpHL-DOX. The increased nuclear accumulation led to the activation of cleaved caspase-3, which efficiently induced apoptosis. Remarkably, we found that chloroquine and E64d enhanced the cytotoxicity of SpHL-DOX. This knowledge is paramount to improve the efficiency of pH-sensitive liposomes or to be used as a rational strategy for developing new formulations to be applied in vivo.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Composición de Medicamentos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Ratones
12.
Nanomedicine (Lond) ; 15(15): 1471-1486, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32552375

RESUMEN

Aim: All-trans retinoic acid (ATRA) shows erratic oral bioavailability when administered orally against leukemia, which can be solved through its incorporation in self-nanoemulsifying drug-delivery systems (SEDDS). The SEDDS developed contained a hydrophobic ion pair between benzathine (BZT) and ATRA and was enriched with tocotrienols by the input of a palm oil tocotrienol rich fraction (TRF) in its composition. Results: SEDDS-TRF-ATRA-BZT allowed the formation of emulsions with nanometric size that retained ATRA within their core after dispersion. Pharmacokinetic parameters after oral administration of SEDDS-TRF-ATRA-BZT in mice were improved compared with what was seen for an ATRA solution. Moreover, SEDDS-TRF-ATRA-BZT had improved activity against HL-60 cells compared with SEDDS without TRF. Conclusion: SEDDS-TRF-ATRA-BZT is a promising therapeutic choice over ATRA conventional medicine.


Asunto(s)
Sistemas de Liberación de Medicamentos , Tretinoina , Administración Oral , Animales , Disponibilidad Biológica , Emulsiones , Ratones
13.
Mol Pharm ; 17(4): 1159-1169, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32125867

RESUMEN

Currently, most nonviral nucleic acid vectors are in the form of colloidal suspensions administered primarily parenterally. This type of formulation and the mode of administration impose strong constraints such as the size of the administered vectors or the production of sterile preparations. The tablet form provides access to easy oral administration, well accepted by patients; As regards nucleic acid vectors, a dry form represents an advance in terms of stability. Using an optimized lipid-based small interfering RNA-delivery system, we studied the tabletability of a liquid suspension of these vectors. We optimized the conditions of freeze-drying by choosing excipients and process, allowing for the conservation of both the gene-silencing efficacy of the formulated siRNAs and the supramolecular structure of the lipid particulate system. Gene-silencing efficacy was assayed on luciferase-expressing cells and the structure of the siRNA vector in freeze-dried and tablet forms was examined using small-angle X-ray scattering (SAXS) synchrotron radiation. The freeze-dried powders were then mixed with excipients necessary for the good progress of the compression by allowing for a regular supply of the matrix and the reduction of friction. The compression was carried out using a rotary press simulator that allows for complete monitoring of the compression conditions. After compression, formulated siRNAs retained more than 60% of their gene-silencing efficacy. Within the tablets, a specific SAXS signal was detectable and the lamellar and cubic phases of the initial liquid suspension were restored after resuspension of siRNA vectors by disintegration of the tablets. These results show that the bilayer lipid structures of the particles were preserved despite the mechanical constraints imposed by the compression. If such a result could be expected after the freeze-drying step, it was never shown, to our knowledge, that siRNA-delivery systems could retain their efficacy and structure after mechanical stress such as compression. This opens promising perspectives to oral administration of siRNA as an alternative to parenteral administration.


Asunto(s)
Lípidos/química , ARN Interferente Pequeño/química , Comprimidos/química , Administración Oral , Animales , Línea Celular , Excipientes/química , Liofilización/métodos , Silenciador del Gen/efectos de los fármacos , Ratones , Ácidos Nucleicos/química , Tamaño de la Partícula , Polvos/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos
14.
Colloids Surf B Biointerfaces ; 188: 110760, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31951929

RESUMEN

Simple size observations of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethyleneglycol)-2000] (DSPE-mPEG2000) polymeric micelles (PM) with different compositions including or not paclitaxel (PTX) are unable to evidence changes on the nanocarrier structure. In such system a detailed characterization using highly sensitive techniques such as X-ray scattering and asymmetric flow field flow fractionation coupled to multi-angle laser light scattering and dynamic light scattering (AF4-MALS-DLS) is mandatory to observe effects that take place by the addition of PTX and/or more lipid-polymer at PM, leading to complex changes on the structure of micelles, as well as in their supramolecular organization. SAXS and AF4-MALS-DLS suggested that PM can be found in the medium separately and highly organized, forming clusters of PM in the latter case. SAXS fitted parameters showed that adding the drug does not change the average PM size since the increase in core radius is compensated by the decrease in shell radius. SAXS observations indicate that PEG conformation takes place, changing from brush to mushroom depending on the PM composition. These findings directly reflect in in vivo studies of blood clearance that showed a longer circulation time of blank PM when compared to PM containing PTX.


Asunto(s)
Paclitaxel/sangre , Fosfatidiletanolaminas/sangre , Polietilenglicoles/metabolismo , Animales , Cápsulas/química , Cápsulas/metabolismo , Ratones , Micelas , Estructura Molecular , Paclitaxel/química , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X
15.
Int J Pharm ; 568: 118466, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31254623

RESUMEN

Some recent studies have shown that pirfenidone (PFD) has favorable results in the healing process of the cornea. However, PFD in solution exhibits short half-life after topical application, and in this context, a liquid crystal nanoparticle system containing PFD (PFD-LCNPs) was developed. The nanoparticles were characterized by transmission electron microscopy, atomic force microscopy, small angle X-ray diffraction and polarized light microscopy. The PFD-LCNPs had particle size and zeta potential of 247.3 nm and -33.60 mV (stores at 4 °C), respectively, and 257.5 nm and -46.00 mV (stored at 25 °C), respectively. The pH of the formulation was 6.9 and the encapsulation efficiency was 35.9%. The in vitro release profiles indicated that PFD sustained release from PFD-LCNPs for up to 12 h. In vitro study of ocular irritation (HET-CAM test) concluded that components of the formulation are well tolerated for ocular administration. Corneal re-epithelialization time after chemical burning was significantly reduced in rabbits treated with PFD-loaded LCNPs when compared to the group treated with a vehicle. In addition, the anti-inflammatory action of pirfenidone was observed by reducing myeloperoxidase activity (MPO) and inflammatory cells in the histology of the tissues of animals treated with PFD-LCNPs. These findings indicated that the PFD-LCNPs might have the potential for effective ocular drug delivery.


Asunto(s)
Analgésicos/administración & dosificación , Antiinflamatorios/administración & dosificación , Quemaduras Químicas/tratamiento farmacológico , Quemaduras Oculares/tratamiento farmacológico , Cristales Líquidos , Nanopartículas/administración & dosificación , Piridonas/administración & dosificación , Administración Oftálmica , Analgésicos/farmacocinética , Animales , Antiinflamatorios/farmacocinética , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Córnea/efectos de los fármacos , Córnea/metabolismo , Córnea/patología , Sistemas de Liberación de Medicamentos , Liberación de Fármacos , Estabilidad de Medicamentos , Quemaduras Oculares/inducido químicamente , Quemaduras Oculares/metabolismo , Quemaduras Oculares/patología , Femenino , Tamaño de la Partícula , Peroxidasa/metabolismo , Piridonas/farmacocinética , Conejos
16.
Langmuir ; 34(20): 5728-5737, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29676924

RESUMEN

A long-circulating and pH-sensitive liposome containing paclitaxel (SpHL-PTX) was recently developed by our group. Once in an acidic environment, for example, tumors, these liposomes undergo destabilization, releasing the encapsulated drug. In this way, the aim of this study was to evaluate the molecular and supramolecular interactions between the lipid bilayer and PTX in similar biological environment conditions. High-sensitivity analyses of SpHL-PTX structures were obtained by the small-angle X-ray scattering technique combined with other techniques such as dynamic light scattering, asymmetric flow field-flow fractionation, transmission electron microscopy, and high-performance liquid chromatography. The results showed that PTX incorporation in the liposomal bilayer clearly leads to changes in supramolecular organization of dioleoylphosphatidylethanolamine (DOPE) molecules, inducing the formation of more ordered structures. Changes in supramolecular organization were observed at lower pH, indicating that pH sensitivity was preserved even in the presence of fetal bovine serum proteins. Furthermore, morphological and physicochemical characterization of SpHL-PTX evidenced the formation of nanosized dispersion suitable for intravenous administration. In conclusion, a stable nanosized dispersion of PTX was obtained at pH 7.4 with suitable parameters for intravenous administration. At lower pH conditions, the pH sensitivity of the system was clearly evidenced by changes in the supramolecular organization of DOPE molecules, which is crucial for the delivery of PTX into the cytoplasm of the targeted cells. In this way, the results obtained by different techniques confirm the feasibility of SpHL as a promising tool to PTX delivery in acidic environments, such as tumors.


Asunto(s)
Portadores de Fármacos/química , Liposomas/química , Paclitaxel/química , Concentración de Iones de Hidrógeno
17.
Biotechnol Biofuels ; 11: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29588658

RESUMEN

BACKGROUND: To date, great strides have been made in elucidating the role of thermochemical pretreatments in the chemical and structural features of plant cell walls; however, there is no clear picture of the plant recalcitrance and its relationship to deconstruction. Previous studies precluded full answers due to the challenge of multiscale features of plant cell wall organization. Complementing the previous efforts, we undertook a systematic, multiscale, and integrated approach to track the effect of microwave-assisted H2SO4 and NaOH treatments on the hierarchical structure of plants, i.e., from a nano- to micrometer scale. We focused on the investigation of the highly recalcitrant sclerenchyma cell walls from sugarcane bagasse. RESULTS: Through atomic force microscopy and X-ray diffraction analyses, remarkable details of the assembly of cellulose microfibrils not previously seen were revealed. Following the H2SO4 treatment, we observed that cellulose microfibrils were almost double the width of the alkali pretreated sample at the temperature of 160 °C. Such enlargement led to a greater contact between cellulose chains, with a subsequent molecule alignment, as indicated by the X-ray diffraction (XRD) results with the conspicuous expansion of the average crystallite size. The delignification process had little effect on the local nanometer-sized arrangement of cellulose molecules. However, the rigidity and parallel alignment of cellulose microfibrils were partially degraded. The XRD analysis also agrees with these findings as evidenced by large momentum transfer vectors (q > 20 nm-1), interpreted as indicators of the long-range order of cell wall components, which were similar for all the studied samples except with application of the NaOH treatment at 160 °C. These changes were followed by the eventual swelling of the fiber cell walls. CONCLUSIONS: Based on an integrated approach, we presented multidimensional architectural models of cell wall deconstruction resulting from microwave-assisted pretreatments. We provided direct evidence supporting the idea that hemicellulose is the main barrier for the swelling of cellulose microfibrils, whereas lignin adds rigidity to cell walls. Our findings shed light on the design of more efficient strategies, not only for the conversion of biomass to fuels but also for the production of nanocellulose, which has great potential for several applications such as composites, rheology modifiers, and pharmaceuticals.

18.
J Phys Chem Lett ; 9(5): 954-960, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29397730

RESUMEN

The goal of this work is to study transformations that occur upon heating Bi2Se3 to temperatures up to 623 K. X-ray diffraction (XRD) and scanning tunneling microscopy (STM) and spectroscopy (STS) techniques were used in our investigation. XRD was measured following the 00L and 01L truncation rods. These measurements revealed that upon heating there is a coexistence of a major Bi2Se3 phase and other ones that present structures of quintuple-layers intercalated with Bismuth bilayers. STM measurements of the surface of this material showed the presence of large hexagonal BixSey domains embedded in a Bi2Se3 matrix. STS experiments were employed to map the local electronic density of states and characterize the modifications imposed by the presence of the additional phases. Finally, density functional theory (DFT) calculations were performed to support these findings.

19.
ACS Appl Mater Interfaces ; 9(48): 42372-42382, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29129058

RESUMEN

Methods to integrate different crystal orientations, strain states, and compositions of semiconductors in planar and preferably flexible configurations may enable nontraditional sensing-, stimulating-, or communication-device applications. We combine crystalline-silicon nanomembranes, patterning, membrane transfer, and epitaxial growth to demonstrate planar arrays of different orientations and strain states of Si in a single membrane, which is then readily transferable to other substrates, including flexible supports. As examples, regions of Si(001) and Si(110) or strained Si(110) are combined to form a multicomponent, single substrate with high-quality narrow interfaces. We perform extensive structural characterization of all interfaces and measure charge-carrier mobilities in different regions of a 2D quilt. The method is readily extendable to include varying compositions or different classes of materials.

20.
Nanotechnology ; 28(30): 305702, 2017 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-28675147

RESUMEN

In this work we attempt to directly observe anisotropic partial relaxation of epitaxial InAs islands using transmission electron microscopy (TEM) and synchrotron x-ray diffraction on a 15 nm thick InAs:GaAs nanomembrane. We show that under such conditions TEM provides improved real-space statistics, allowing the observation of partial relaxation processes that were not previously detected by other techniques or by usual TEM cross section images. Besides the fully coherent and fully relaxed islands that are known to exist above previously established critical thickness, we prove the existence of partially relaxed islands, where incomplete 60° half-loop misfit dislocations lead to a lattice relaxation along one of the 〈110〉 directions, keeping a strained lattice in the perpendicular direction. Although individual defects cannot be directly observed, their implications to the resulting island registry are identified and discussed within the frame of half-loops propagations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...