Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
eNeurologicalSci ; 29: 100434, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36348961

RESUMEN

Background: The aim of this study was to measure serum brain injury biomarkers in patients with COVID-19 admitted to intensive care unit (ICU), without evidence of brain impairment, and to determine potential correlations with systemic inflammatory markers, illness severity, and outcome. Methods: In patients admitted to the ICU with COVID-19, without clinical evidence of brain injury, blood S100 calcium-binding protein B (S100B), neuron-specific enolase (NSE) and interleukin-6 (IL-6) were measured on admission. Clinical, routine laboratory data and illness severity were recorded. Comparisons between 28-day survivors and non-survivors and correlations of neurological biomarkers to other laboratory data and illness severity, were analyzed. Results: We included 50 patients, median age 64 [IQR 58-78] years, 39 (78%) males, 39 (78%) mechanically ventilated and 11 (22%) under high flow nasal oxygen treatment. S100B and NSE were increased in 19 (38%) and 45 (90%) patients, respectively. S100B was significantly elevated in non-survivors compared to survivors: 0.15 [0.10-0.29] versus 0.11 [0.07-0.17] µg/L, respectively, (p = 0.03), and significantly correlated with age, IL-6, arterial lactate, noradrenaline dose, illness severity and lymphocyte count. IL-6 was significantly correlated with C-reactive protein, noradrenaline dose and organ failure severity. NSE was correlated only with lactate dehydrogenase. Conclusion: Brain injury biomarkers were frequently elevated in COVID-19 ICU patients, in the absence of clinical evidence of brain injury. S100B was significantly correlated with IL-6, low lymphocyte count, hypoperfusion indices, illness severity, and short-term outcome. These findings indicate a possible brain astrocytes and neurons involvement, also suggesting a broader role of S100B in systemic inflammatory response.

2.
Resusc Plus ; 10: 100252, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35652112

RESUMEN

Aim: Postresuscitation hemodynamics are associated with hospital mortality/functional outcome. We sought to determine whether low-dose steroids started during and continued after cardiopulmonary resuscitation (CPR) affect postresuscitation hemodynamics and other physiological variables in vasopressor-requiring, in-hospital cardiac arrest. Methods: We conducted a two-center, randomized, double-blind trial of patients with adrenaline (epinephrine)-requiring cardiac arrest. Patients were randomized to receive either methylprednisolone 40 mg (steroids group) or normal saline-placebo (control group) during the first CPR cycle post-enrollment. Postresuscitation shock was treated with hydrocortisone 240 mg daily for 7 days maximum and gradual taper (steroids group), or saline-placebo (control group). Primary outcomes were arterial pressure and central-venous oxygen saturation (ScvO2) within 72 hours post-ROSC. Results: Eighty nine of 98 controls and 80 of 86 steroids group patients with ROSC were treated as randomized. Primary outcome data were collected from 100 patients with ROSC (control, n = 54; steroids, n = 46). In intention-to-treat mixed-model analyses, there was no significant effect of group on arterial pressure, marginal mean (95% confidence interval) for mean arterial pressure, steroids vs. control: 74 (68-80) vs. 72 (66-79) mmHg] and ScvO2 [71 (68-75)% vs. 69 (65-73)%], cardiac index [2.8 (2.5-3.1) vs. 2.9 (2.5-3.2) L/min/m2], and serum cytokine concentrations [e.g. interleukin-6, 89.1 (42.8-133.9) vs. 75.7 (52.1-152.3) pg/mL] determined within 72 hours post-ROSC (P = 0.12-0.86). There was no between-group difference in body temperature, echocardiographic variables, prefrontal blood flow index/cerebral autoregulation, organ failure-free days, and hazard for poor in-hospital/functional outcome, and adverse events (P = 0.08->0.99). Conclusions: Our results do not support the use of low-dose corticosteroids in in-hospital cardiac arrest.Trial Registration:ClinicalTrials.gov number: NCT02790788 ( https://www.clinicaltrials.gov ).

4.
Nutrients ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011026

RESUMEN

The outbreak of the new coronavirus strain SARS-CoV-2 (COVID-19) highlighted the need for appropriate feeding practices among critically ill patients admitted to the intensive care unit (ICU). This study aimed to describe feeding practices of intubated COVID-19 patients during their second week of hospitalization in the First Department of Critical Care Medicine, Evaggelismos General Hospital, and evaluate potential associations with all cause 30-day mortality, length of hospital stay, and duration of mechanical ventilation. We enrolled adult intubated COVID-19 patients admitted to the ICU between September 2020 and July 2021 and prospectively monitored until their hospital discharge. Of the 162 patients analyzed (52.8% men, 51.6% overweight/obese, mean age 63.2 ± 11.9 years), 27.2% of patients used parenteral nutrition, while the rest were fed enterally. By 30 days, 34.2% of the patients in the parenteral group had died compared to 32.7% of the patients in the enteral group (relative risk (RR) for the group receiving enteral nutrition = 0.97, 95% confidence interval = 0.88-1.06, p = 0.120). Those in the enteral group demonstrated a lower duration of hospital stay (RR = 0.91, 95% CI = 0.85-0.97, p = 0.036) as well as mechanical ventilation support (RR = 0.94, 95% CI = 0.89-0.99, p = 0.043). Enteral feeding during second week of ICU hospitalization may be associated with a shorter duration of hospitalization and stay in mechanical ventilation support among critically ill intubated patients with COVID-19.


Asunto(s)
COVID-19/mortalidad , COVID-19/terapia , Cuidados Críticos/métodos , Nutrición Enteral/estadística & datos numéricos , Nutrición Parenteral/estadística & datos numéricos , Respiración Artificial/mortalidad , Enfermedad Crítica , Nutrición Enteral/métodos , Nutrición Enteral/mortalidad , Femenino , Grecia/epidemiología , Humanos , Tiempo de Internación/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Nutrición Parenteral/métodos , Nutrición Parenteral/mortalidad , Estudios Prospectivos , Respiración Artificial/métodos , SARS-CoV-2 , Factores de Tiempo , Resultado del Tratamiento
5.
Metabolites ; 10(10)2020 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-32998323

RESUMEN

Coronavirus disease-19 (COVID-19) continues to be a health threat worldwide. Increased blood lactate is common in intensive care unit (ICU) patients; however, its association with outcomes in ICU COVID-19 patients remains currently unexplored. In this retrospective, observational study we assessed whether lactate is associated with outcomes in COVID-19 patients. Blood lactate was measured on ICU admission and thereafter daily up to day 14 in 45 patients with confirmed COVID-19 pneumonia. Acute physiology and chronic health evaluation (APACHE II) was calculated on ICU admission, and sequential organ failure assessment (SOFA) score was assessed on admission and every second day. The cohort was divided into survivors and non-survivors based on 28-day ICU mortality (24.4%). Cox regression analysis revealed that maximum lactate on admission was independently related to 28-day ICU mortality with time in the presence of APACHE II (RR = 2.45, p = 0.008). Lactate's area under the curve for detecting 28-day ICU mortality was 0.77 (p = 0.008). Mixed model analysis showed that mean daily lactate levels were higher in non-survivors (p < 0.0001); the model applied on SOFA scores showed a similar time pattern. Thus, initial blood lactate was an independent outcome predictor in COVID-19 ICU patients. The time course of lactate mirrors organ dysfunction and is associated with poor clinical outcomes.

6.
ERJ Open Res ; 6(3)2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33015144

RESUMEN

BACKGROUND: According to the literature, 20-30% of intubated patients are difficult to wean off mechanical ventilation and have a prolonged intensive care unit (ICU) stay with detrimental effects on muscle strength, functional ability and quality of life. Inspiratory muscle training (IMT) via a threshold device has been proposed as an effective exercise for minimising the effects of mechanical ventilation on respiratory muscles of critically ill patients with prolonged weaning. In addition, high-flow nasal cannula (HFNC) oxygen has been proved to provide efficient support for both high- and low-risk patients after extubation, thus preventing re-intubation. MATERIAL AND METHODS: A randomised controlled trial was designed to assess the efficacy of combining IMT and HFNC as therapeutic strategies for patients with high risk for weaning failure. Once patients with prognostic factors of difficult weaning are awake, ventilated with support settings and cooperative, they will be randomised to one of the two following study groups: intervention group (IMT and HFNC) and control group (IMT and Venturi mask). IMT will start as soon as possible. Each allocated oxygen delivery device will be applied immediately after extubation. IMT intervention will continue until patients' discharge from ICU. The primary outcome is the rate of weaning failure. Secondary outcomes are maximal inspiratory and expiratory strength, endurance of respiratory muscles, global muscle strength, functional ability and quality of life along with duration of ventilation (days) and ICU and hospital length of stay. CONCLUSION: The present study could significantly contribute to knowledge of how best to treat patients with difficult weaning and high risk of re-intubation.

7.
J Intensive Care ; 6: 58, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30202530

RESUMEN

BACKGROUND: Recent, large trials of high-frequency oscillation (HFO) versus conventional ventilation (CV) in acute respiratory distress syndrome (ARDS) reported negative results. This could be explained by an HFO-induced right ventricular (RV) dysfunction/failure due to high intrathoracic pressures and hypercapnia. We hypothesized that HFO strategies aimed at averting/attenuating hypercapnia, such as "low-frequency" (i.e., 4 Hz) HFO and 4-Hz HFO with tracheal-gas insufflation (HFO-TGI), may result in an improved RV function relative to "high-frequency" (i.e., 7 Hz) HFO (which may promote hypercapnia) and similar RV function relative to lung protective CV. METHODS: We studied 17 patients with moderate-to-severe ARDS [PaO2-to-inspiratory O2 fraction ratio (PaO2/FiO2) < 150]. RV function was assessed by transesophageal echocardiography (TEE). Patients received 60 min of CV for TEE-guided, positive end-expiratory pressure (PEEP) "optimization" and subsequent stabilization; 60 min of 4-Hz HFO for "study mean airway pressure (mPaw)" titration to peripheral oxygen saturation ≥ 95%, without worsening RV function as assessed by TEE; 60 min of each tested HFO strategy in random order; and another 60 min of CV using the pre-HFO, TEE-guided PEEP setting. Study measurements (i.e., gas exchange, hemodynamics, and TEE data) were obtained over the last 10 min of pre-HFO CV, of each one of the three tested HFO strategies, and of post-HFO CV. RESULTS: The mean "study HFO mPaw" was 8-10 cmH2O higher relative to pre-HFO CV. Seven-Hz HFO versus 4-Hz HFO and 4-Hz HFO-TGI resulted in higher mean ± SD right-to-left ventricular end-diastolic area ratio (RVEDA/LVEDA) (0.64 ± 0.15 versus 0.56 ± 0.14 and 0.52 ± 0.10, respectively, both p < 0.05). Higher diastolic/systolic eccentricity indexes (1.33 ± 0.19/1.42 ± 0.17 versus 1.21 ± 0.10/1.26 ± 0.10 and 1.17 ± 0.11/1.17 ± 0.13, respectively, all p < 0.05). Seven-Hz HFO resulted in 18-28% higher PaCO2 relative to all other ventilatory strategies (all p < 0.05). Four-Hz HFO-TGI versus pre-HFO CV resulted in 15% lower RVEDA/LVEDA, and 7%/10% lower diastolic/systolic eccentricity indexes (all p < 0.05). Mean PaO2/FiO2 improved by 77-80% during HFO strategies versus CV (all p < 0.05). Mean cardiac index varied by ≤ 10% among strategies. Percent changes in PaCO2 among strategies were predictive of concurrent percent changes in measures of RV function (R2 = 0.21-0.43). CONCLUSIONS: In moderate-to-severe ARDS, "short-term" 4-Hz HFO strategies resulted in better RV function versus 7-Hz HFO, partly attributable to improved PaCO2 control, and similar or improved RV function versus CV. TRIAL REGISTRATION: This study was registered 40 days prior to the enrollment of the first patient at ClinicalTrials.gov, ID no. NCT02027129, Principal Investigator Spyros D. Mentzelopoulos, date of registration January 3, 2014.

9.
J Crit Care ; 29(4): 568-73, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24814973

RESUMEN

PURPOSE: High-frequency oscillation combined with tracheal gas insufflation (HFO-TGI) improves oxygenation in patients with acute respiratory distress syndrome (ARDS). There are limited physiologic data regarding the effects of HFO-TGI on hemodynamics and pulmonary edema during ARDS. The aim of this study was to investigate the effect of HFO-TGI on extravascular lung water (EVLW). MATERIALS AND METHODS: We conducted a prospective, randomized, crossover study. Consecutive eligible patients with ARDS received sessions of conventional mechanical ventilation with recruitment maneuvers (RMs), followed by HFO-TGI with RMs, or vice versa. Each ventilatory technique was administered for 8 hours. The order of administration was randomly assigned. Arterial/central venous blood gas analysis and measurement of hemodynamic parameters and EVLW were performed at baseline and after each 8-hour period using the single-indicator thermodilution technique. RESULTS: Twelve patients received 32 sessions. Pao2/fraction of inspired oxygen and respiratory system compliance were higher (P<.001 for both), whereas extravascular lung water index to predicted body weight and oxygenation index were lower (P=.021 and .029, respectively) in HFO-TGI compared with conventional mechanical ventilation. There was a significant correlation between Pao2/fraction of inspired oxygen improvement and extravascular lung water index drop during HFO-TGI (Rs=-0.452, P=.009). CONCLUSIONS: High-frequency oscillation combined with tracheal gas insufflation improves gas exchange and lung mechanics in ARDS and potentially attenuates EVLW accumulation.


Asunto(s)
Agua Pulmonar Extravascular/fisiología , Ventilación de Alta Frecuencia/métodos , Insuflación/métodos , Edema Pulmonar/prevención & control , Síndrome de Dificultad Respiratoria/terapia , Adulto , Análisis de los Gases de la Sangre , Peso Corporal , Estudios Cruzados , Femenino , Ventilación de Alta Frecuencia/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Edema Pulmonar/fisiopatología , Respiración , Síndrome de Dificultad Respiratoria/fisiopatología
10.
JAMA ; 310(3): 270-9, 2013 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-23860985

RESUMEN

IMPORTANCE: Among patients with cardiac arrest, preliminary data have shown improved return of spontaneous circulation and survival to hospital discharge with the vasopressin-steroids-epinephrine (VSE) combination. OBJECTIVE: To determine whether combined vasopressin-epinephrine during cardiopulmonary resuscitation (CPR) and corticosteroid supplementation during and after CPR improve survival to hospital discharge with a Cerebral Performance Category (CPC) score of 1 or 2 in vasopressor-requiring, in-hospital cardiac arrest. DESIGN, SETTING, AND PARTICIPANTS: Randomized, double-blind, placebo-controlled, parallel-group trial performed from September 1, 2008, to October 1, 2010, in 3 Greek tertiary care centers (2400 beds) with 268 consecutive patients with cardiac arrest requiring epinephrine according to resuscitation guidelines (from 364 patients assessed for eligibility). INTERVENTIONS: Patients received either vasopressin (20 IU/CPR cycle) plus epinephrine (1 mg/CPR cycle; cycle duration approximately 3 minutes) (VSE group, n = 130) or saline placebo plus epinephrine (1 mg/CPR cycle; cycle duration approximately 3 minutes) (control group, n = 138) for the first 5 CPR cycles after randomization, followed by additional epinephrine if needed. During the first CPR cycle after randomization, patients in the VSE group received methylprednisolone (40 mg) and patients in the control group received saline placebo. Shock after resuscitation was treated with stress-dose hydrocortisone (300 mg daily for 7 days maximum and gradual taper) (VSE group, n = 76) or saline placebo (control group, n = 73). MAIN OUTCOMES AND MEASURES: Return of spontaneous circulation (ROSC) for 20 minutes or longer and survival to hospital discharge with a CPC score of 1 or 2. RESULTS: Follow-up was completed in all resuscitated patients. Patients in the VSE group vs patients in the control group had higher probability for ROSC of 20 minutes or longer (109/130 [83.9%] vs 91/138 [65.9%]; odds ratio [OR], 2.98; 95% CI, 1.39-6.40; P = .005) and survival to hospital discharge with CPC score of 1 or 2 (18/130 [13.9%] vs 7/138 [5.1%]; OR, 3.28; 95% CI, 1.17-9.20; P = .02). Patients in the VSE group with postresuscitation shock vs corresponding patients in the control group had higher probability for survival to hospital discharge with CPC scores of 1 or 2 (16/76 [21.1%] vs 6/73 [8.2%]; OR, 3.74; 95% CI, 1.20-11.62; P = .02), improved hemodynamics and central venous oxygen saturation, and less organ dysfunction. Adverse event rates were similar in the 2 groups. CONCLUSION AND RELEVANCE: Among patients with cardiac arrest requiring vasopressors, combined vasopressin-epinephrine and methylprednisolone during CPR and stress-dose hydrocortisone in postresuscitation shock, compared with epinephrine/saline placebo, resulted in improved survival to hospital discharge with favorable neurological status. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00729794.


Asunto(s)
Agonistas Adrenérgicos beta/uso terapéutico , Epinefrina/uso terapéutico , Paro Cardíaco/complicaciones , Paro Cardíaco/terapia , Hemostáticos/uso terapéutico , Metilprednisolona/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Vasopresinas/uso terapéutico , Anciano , Anciano de 80 o más Años , Encéfalo/fisiopatología , Reanimación Cardiopulmonar , Método Doble Ciego , Quimioterapia Combinada , Femenino , Escala de Consecuencias de Glasgow , Humanos , Hidrocortisona/uso terapéutico , Pacientes Internos , Masculino , Persona de Mediana Edad , Alta del Paciente , Choque/tratamiento farmacológico , Choque/etiología , Análisis de Supervivencia , Resultado del Tratamiento
11.
Crit Care ; 17(4): R136, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23844839

RESUMEN

INTRODUCTION: In acute respiratory distress syndrome (ARDS), combined high-frequency oscillation (HFO) and tracheal gas insufflation (TGI) improves gas exchange compared with conventional mechanical ventilation (CMV). We evaluated the effect of HFO-TGI on PaO2/fractional inspired O2 (FiO2) and PaCO2, systemic hemodynamics, intracranial pressure (ICP), and cerebral perfusion pressure (CPP) in patients with traumatic brain injury (TBI) and concurrent severe ARDS. METHODS: We studied 13 TBI/ARDS patients requiring anesthesia, hyperosmolar therapy, and ventilation with moderate-to-high CMV-tidal volumes for ICP control. Patients had PaO2/FiO2 <100 mm Hg at end-expiratory pressure ≥10 cm H2O. Patients received consecutive, daily, 12-hour rescue sessions of HFO-TGI interspersed with 12-hour periods of CMV. HFO-TGI was discontinued when the post-HFO-TGI PaO2/FiO2 exceeded 100 mm Hg for >12 hours. Arterial/central-venous blood gases, hemodynamics, and ICP were recorded before, during (every 4 hours), and after HFO-TGI, and were analyzed by using repeated measures analysis of variance. Respiratory mechanics were assessed before and after HFO-TGI. RESULTS: Each patient received three to four HFO-TGI sessions (total sessions, n = 43). Pre-HFO-TGI PaO2/FiO2 (mean ± standard deviation (SD): 83.2 ± 15.5 mm Hg) increased on average by approximately 130% to163% during HFO-TGI (P < 0.01) and remained improved by approximately 73% after HFO-TGI (P < 0.01). Pre-HFO-TGI CMV plateau pressure (30.4 ± 4.5 cm H2O) and respiratory compliance (37.8 ± 9.2 ml/cm H2O), respectively, improved on average by approximately 7.5% and 20% after HFO-TGI (P < 0.01 for both). During HFO-TGI, systemic hemodynamics remained unchanged. Transient improvements were observed after 4 hours of HFO-TGI versus pre-HFO-TGI CMV in PaCO2 (37.7 ± 9.9 versus 41.2 ± 10.8 mm Hg; P < 0.01), ICP (17.2 ± 5.4 versus 19.7 ± 5.9 mm Hg; P < 0.05), and CPP (77.2 ± 14.6 versus 71.9 ± 14.8 mm Hg; P < 0.05). CONCLUSIONS: In TBI/ARDS patients, HFO-TGI may improve oxygenation and respiratory mechanics, without adversely affecting PaCO2, hemodynamics, or ICP. These findings support the use of HFO-TGI as a rescue ventilatory strategy in patients with severe TBI and imminent oxygenation failure due to severe ARDS.


Asunto(s)
Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/terapia , Ventilación de Alta Frecuencia , Insuflación , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/terapia , Adulto , Lesiones Encefálicas/fisiopatología , Circulación Cerebrovascular , Femenino , Hemodinámica , Humanos , Presión Intracraneal , Masculino , Oxígeno/sangre , Presión Parcial , Estudios Prospectivos , Intercambio Gaseoso Pulmonar , Respiración , Síndrome de Dificultad Respiratoria/fisiopatología , Tráquea , Adulto Joven
12.
Intensive Care Med ; 37(6): 990-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21369813

RESUMEN

PURPOSE: In acute respiratory distress syndrome (ARDS), combined high frequency oscillation (HFO) and tracheal gas insufflation (TGI) improves oxygenation versus standard HFO, likely through TGI-induced lung recruitment. Experimental data suggest that steady flows such as TGI favor the filling of the lower (i.e., subcarinal) lung. We used whole-lung computerized tomography (CT) to determine whether HFO-TGI versus HFO improves the recruitment of the lower lung, and especially of its dependent region, where loss of aeration is maximized in ARDS. METHODS: We enrolled 15 patients who had ARDS for 96 h or less, and pulmonary infiltrates in at least three chest X-ray quadrants. Patients were subjected to whole-lung CT after lung-protective conventional mechanical ventilation (CMV) and after 45 min of HFO and 45 min of HFO-TGI. HFO/HFO-TGI were employed in random order. CT scans were obtained at a continuous positive airways pressure equal to the mean tracheal pressure (P (tr)) of CMV. During HFO/HFO-TGI, mean airway pressure was titrated to the CMV P (tr) level. Gas exchange and intra-arterial pressure/heart rate were determined for each ventilatory technique. RESULTS: Regarding total lung parenchyma, HFO-TGI versus HFO and CMV resulted in a lower percentage of nonaerated lung tissue (mean ± SD, 51.4 ± 5.1% vs. 60.0 ± 2.5%, and 62.1 ± 9.0%, respectively; P≤0.04); this was due to HFO-TGI-induced recruitment of nonaerated tissue in the dependent and nondependent lower lung. HFO-TGI increased normally aerated tissue versus CMV (P=0.04) and poorly aerated tissue versus HFO and CMV (P≤0.04), and improved oxygenation versus HFO and CMV (P≤0.04). CONCLUSIONS: HFO-TGI improves oxygenation versus HFO and CMV through the recruitment of previously nonaerated lower lung units.


Asunto(s)
Ventilación de Alta Frecuencia , Insuflación/métodos , Pulmón/diagnóstico por imagen , Síndrome de Dificultad Respiratoria/terapia , Tomografía Computarizada por Rayos X , Tráquea , Adulto , Anciano , Femenino , Hemodinámica , Humanos , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Monitoreo Fisiológico/métodos , Consumo de Oxígeno , Intercambio Gaseoso Pulmonar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...