Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 28(6): 2549-2562, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37198262

RESUMEN

Environmental toxicant exposure, including air pollution, is increasing worldwide. However, toxicant exposures are not equitably distributed. Rather, low-income and minority communities bear the greatest burden, along with higher levels of psychosocial stress. Both air pollution and maternal stress during pregnancy have been linked to neurodevelopmental disorders such as autism, but biological mechanisms and targets for therapeutic intervention remain poorly understood. We demonstrate that combined prenatal exposure to air pollution (diesel exhaust particles, DEP) and maternal stress (MS) in mice induces social behavior deficits only in male offspring, in line with the male bias in autism. These behavioral deficits are accompanied by changes in microglial morphology and gene expression as well as decreased dopamine receptor expression and dopaminergic fiber input in the nucleus accumbens (NAc). Importantly, the gut-brain axis has been implicated in ASD, and both microglia and the dopamine system are sensitive to the composition of the gut microbiome. In line with this, we find that the composition of the gut microbiome and the structure of the intestinal epithelium are significantly shifted in DEP/MS-exposed males. Excitingly, both the DEP/MS-induced social deficits and microglial alterations in males are prevented by shifting the gut microbiome at birth via a cross-fostering procedure. However, while social deficits in DEP/MS males can be reversed by chemogenetic activation of dopamine neurons in the ventral tegmental area, modulation of the gut microbiome does not impact dopamine endpoints. These findings demonstrate male-specific changes in the gut-brain axis following DEP/MS and suggest that the gut microbiome is an important modulator of both social behavior and microglia.


Asunto(s)
Dopamina , Microglía , Embarazo , Femenino , Ratones , Masculino , Animales , Microglía/metabolismo , Dopamina/metabolismo , Conducta Social , Emisiones de Vehículos , Neuronas Dopaminérgicas
2.
Cell Rep ; 40(5): 111161, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35926455

RESUMEN

Gestational exposure to environmental toxins and socioeconomic stressors is epidemiologically linked to neurodevelopmental disorders with strong male bias, such as autism. We model these prenatal risk factors in mice by co-exposing pregnant dams to an environmental pollutant and limited-resource stress, which robustly activates the maternal immune system. Only male offspring display long-lasting behavioral abnormalities and alterations in the activity of brain networks encoding social interactions. Cellularly, prenatal stressors diminish microglial function within the anterior cingulate cortex, a central node of the social coding network, in males during early postnatal development. Precise inhibition of microglial phagocytosis within the anterior cingulate cortex (ACC) of wild-type (WT) mice during the same critical period mimics the impact of prenatal stressors on a male-specific behavior, indicating that environmental stressors alter neural circuit formation in males via impairing microglia function during development.


Asunto(s)
Trastornos del Neurodesarrollo , Efectos Tardíos de la Exposición Prenatal , Animales , Conducta Animal/fisiología , Encéfalo , Femenino , Humanos , Masculino , Ratones , Microglía , Embarazo
3.
Neuropsychopharmacology ; 47(10): 1755-1763, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35835992

RESUMEN

The current opioid epidemic has dramatically increased the number of children who are prenatally exposed to opioids, including oxycodone. A number of social and cognitive abnormalities have been documented in these children as they reach young adulthood. However, little is known about the mechanisms underlying developmental effects of prenatal opioid exposure. Microglia, the resident immune cells of the brain, respond to acute opioid exposure in adulthood. Moreover, microglia are known to sculpt neural circuits during typical development. Indeed, we recently found that microglial phagocytosis of dopamine D1 receptors (D1R) in the nucleus accumbens (NAc) is required for the natural developmental decline in NAc-D1R that occurs between adolescence and adulthood in rats. This microglial pruning occurs only in males, and is required for the normal developmental trajectory of social play behavior. However, virtually nothing is known as to whether this developmental program is altered by prenatal exposure to opioids. Here, we show in rats that maternal oxycodone self-administration during pregnancy leads to reduced adolescent microglial phagocytosis of D1R and subsequently higher D1R density within the NAc in adult male, but not female, offspring. Finally, we show prenatal and adult behavioral deficits in opioid-exposed offspring, including impaired extinction of oxycodone-conditioned place preference in males. This work demonstrates for the first time that microglia play a key role in translating prenatal opioid exposure to changes in neural systems and behavior.


Asunto(s)
Analgésicos Opioides , Efectos Tardíos de la Exposición Prenatal , Analgésicos Opioides/farmacología , Animales , Dopamina/farmacología , Femenino , Humanos , Masculino , Microglía/metabolismo , Núcleo Accumbens , Oxicodona/farmacología , Embarazo , Ratas , Receptores de Dopamina D1/metabolismo , Recompensa
4.
Brain Behav Immun ; 90: 332-345, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32860938

RESUMEN

Decreases in social behavior are a hallmark aspect of acute "sickness behavior" in response to infection. However, immune insults that occur during the perinatal period may have long-lasting consequences for adult social behavior by impacting the developmental organization of underlying neural circuits. Microglia, the resident immune cells of the central nervous system, are sensitive to immune stimulation and play a critical role in the developmental sculpting of neural circuits, making them likely mediators of this process. Here, we investigated the impact of a postnatal day (PND) 4 lipopolysaccharide (LPS) challenge on social behavior in adult mice. Somewhat surprisingly, neonatal LPS treatment decreased sociability in adult female, but not male mice. LPS-treated females also displayed reduced social interaction and social memory in a social discrimination task as compared to saline-treated females. Somatostatin (SST) interneurons within the anterior cingulate cortex (ACC) have recently been suggested to modulate a variety of social behaviors. Interestingly, the female-specific changes in social behavior observed here were accompanied by an increase in SST interneuron number in the ACC. Finally, these changes in social behavior and SST cell number do not appear to depend on microglial inflammatory signaling, because microglia-specific genetic knock-down of myeloid differentiation response protein 88 (MyD88; the removal of which prevents LPS from increasing proinflammatory cytokines such as TNFα and IL-1ß) did not prevent these LPS-induced changes. This study provides novel evidence for enduring effects of neonatal immune activation on social behavior and SST interneurons in females, largely independent of microglial inflammatory signaling.


Asunto(s)
Células Secretoras de Somatostatina , Somatostatina , Animales , Recuento de Células , Femenino , Lipopolisacáridos , Ratones , Microglía , Embarazo , Conducta Social
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...