Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Respir Rev ; 32(169)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37495247

RESUMEN

COPD is a common, preventable and usually progressive disease associated with an enhanced chronic inflammatory response in the airways and lung, generally caused by exposure to noxious particles and gases. It is a treatable disease characterised by persistent respiratory symptoms and airflow limitation due to abnormalities in the airways and/or alveoli. COPD is currently the third leading cause of death worldwide, representing a serious public health problem and a high social and economic burden. Despite significant advances, effective clinical treatments have not yet been achieved. In this scenario, cell-based therapies have emerged as potentially promising therapeutic approaches. However, there are only a few published studies of cell-based therapies in human patients with COPD and a small number of ongoing clinical trials registered on clinicaltrials.gov Despite the advances and interesting results, numerous doubts and questions remain about efficacy, mechanisms of action, culture conditions, doses, timing, route of administration and conditions related to homing and engraftment of the infused cells. This article presents the state of the art of cell-based therapy in COPD. Clinical trials that have already been completed and with published results are discussed in detail. We also discuss the questions that remain unanswered about cell-based regenerative and translational medicine for COPD.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Humanos , Enfermedad Pulmonar Obstructiva Crónica/terapia , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Ciencia Traslacional Biomédica , Pulmón , Inflamación
2.
Arch Dermatol Res ; 315(4): 943-955, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36418601

RESUMEN

Propolis is a natural resin that is produced by bees. It has anti-inflammatory and antibiotic properties, promotes reepithelization, and stimulates skin regeneration. Propolis has great potential for the development of new therapeutic approaches to treat skin ulcers. The present study performed a systematic review and meta-analysis of published studies of the use of propolis for the regeneration of cutaneous wounds and its efficacy as a therapeutic agent. Data were collected from articles in the PubMed, SCOPUS, and Web of Science databases that were published since 1900 by searching the terms "propolis" AND "wound healing." This search yielded 633 articles, of which 43 were included in this systematic review and meta-analysis. The results showed that interest in the therapeutic efficacy of propolis has increased over the years. The studies reported that the propolis was effective for the treatment of skin ulcers by promoting a higher percentage of healing than classically employed interventions. The mode of propolis application has also evolved. An increasing number of studies combined it with other substances and materials to achieve additive or synergistic effects on the skin regeneration process. Propolis appears to be an effective therapeutic alternative for the treatment of skin ulcers.


Asunto(s)
Própolis , Úlcera Cutánea , Humanos , Própolis/uso terapéutico , Piel , Cicatrización de Heridas , Úlcera Cutánea/tratamiento farmacológico , Antibacterianos/uso terapéutico
3.
Tissue Eng Regen Med ; 18(5): 735-745, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34080133

RESUMEN

BACKGROUND: Chronic respiratory diseases (CRD) are a major public health problem worldwide. In the current epidemiological context, CRD have received much interest when considering their correlation with greater susceptibility to SARS-Cov-2 and severe disease (COVID-19). Increasingly more studies have investigated pathophysiological interactions between CRD and COVID-19. AREA COVERED: Animal experimentation has decisively contributed to advancing our knowledge of CRD. Considering the increase in ethical restrictions in animal experimentation, researchers must focus on new experimental alternatives. Two-dimensional (2D) cell cultures have complemented animal models and significantly contributed to advancing research in the life sciences. However, 2D cell cultures have several limitations in studies of cellular interactions. Three-dimensional (3D) cell cultures represent a new and robust platform for studying complex biological processes and are a promising alternative in regenerative and translational medicine. EXPERT OPINION: Three-dimensional cell cultures are obtained by combining several types of cells in integrated and self-organized systems in a 3D structure. These 3D cell culture systems represent an efficient methodological approach in studies of pathophysiology and lung therapy. More recently, complex 3D culture systems, such as lung-on-a-chip, seek to mimic the physiology of a lung in vivo through a microsystem that simulates alveolar-capillary interactions and exposure to air. The present review introduces and discusses 3D lung cultures as robust platforms for studies of the pathophysiology of CRD and COVID-19 and the mechanisms that underlie interactions between CRD and COVID-19.


Asunto(s)
COVID-19 , Animales , Técnicas de Cultivo de Célula , Humanos , Pulmón , SARS-CoV-2
4.
Int J Chron Obstruct Pulmon Dis ; 16: 3561-3574, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35002228

RESUMEN

BACKGROUND AND OBJECTIVES: Chronic obstructive pulmonary disease (COPD) is characterized by the destruction of alveolar walls, chronic inflammation and persistent respiratory symptoms. There is no curative clinical treatment for COPD. In this context, cell-based therapy is a promising therapeutic alternative for COPD. Thus, in this open, controlled and randomized Phase I Clinical Trial, we aimed to assess the safety of the infusion of autologous bone marrow mononuclear cells (BMMC), adipose-derived mesenchymal stromal cells (ADSC) and, especially, the safety of concomitant infusion (co-infusion) of BMMC and ADSC as a new therapeutic alternative for COPD. The rationale for co-infusion of BMMC and ADSC is based on the hypothesis of an additive or synergistic therapeutic effect resulting from this association. METHODS: To achieve the proposed objectives, twenty patients with moderate-to-severe COPD were randomly divided into four groups: control group - patients receiving conventional treatment; BMMC group - patients receiving only BMMC; ADSC group - patients receiving only ADSC, and co-infusion group - patients receiving the concomitant infusion of BMMC and ADSC. Patients were assessed for pulmonary function, biochemical profile, and quality of life over a 12 months follow-up. RESULTS: No adverse events were detected immediately after the infusion of BMMC, ADSC or co-infusion. In the 12-month follow-up, no causal relationship was established between adverse events and cell therapy procedures. Regarding the efficacy, the BMMC group showed an increase in forced expiratory volume (FEV1) and diffusing capacity for carbon monoxide (DLCO). Co-infusion group showed a DLCO, and gas exchange improvement and a better quality of life. CONCLUSION: The results obtained allow us to conclude that cell-based therapy with co-infusion of BMMC and ADSC is a safe procedure and a promising therapeutic for COPD. However, additional studies with a greater number of patients are needed before randomized and controlled Phase III clinical trials can be implemented.


Asunto(s)
Células Madre Mesenquimatosas , Enfermedad Pulmonar Obstructiva Crónica , Médula Ósea , Volumen Espiratorio Forzado , Humanos , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/terapia , Calidad de Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...