Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 15409, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104401

RESUMEN

The novel coronavirus (COVID-19), has undoubtedly imprinted our lives with its deadly impact. Early testing with isolation of the individual is the best possible way to curb the spread of this deadly virus. Computer aided diagnosis (CAD) provides an alternative and cheap option for screening of the said virus. In this paper, we propose a convolution neural network (CNN)-based CAD method for COVID-19 and pneumonia detection from chest X-ray images. We consider three input types for three identical base classifiers. To capture maximum possible complementary features, we consider the original RGB image, Red channel image and the original image stacked with Robert's edge information. After that we develop an ensemble strategy based on the technique for order preference by similarity to an ideal solution (TOPSIS) to aggregate the outcomes of base classifiers. The overall framework, called TOPCONet, is very light in comparison with standard CNN models in terms of the number of trainable parameters required. TOPCONet achieves state-of-the-art results when evaluated on the three publicly available datasets: (1) IEEE COVID-19 dataset + Kaggle Pneumonia Dataset, (2) Kaggle Radiography dataset and (3) COVIDx.


Asunto(s)
COVID-19 , Neumonía , COVID-19/diagnóstico por imagen , Diagnóstico por Computador/métodos , Humanos , Redes Neurales de la Computación , Rayos X
2.
Expert Syst Appl ; 206: 117812, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35754941

RESUMEN

The rapid outbreak of COVID-19 has affected the lives and livelihoods of a large part of the society. Hence, to confine the rapid spread of this virus, early detection of COVID-19 is extremely important. One of the most common ways of detecting COVID-19 is by using chest X-ray images. In the literature, it is found that most of the research activities applied convolutional neural network (CNN) models where the features generated by the last convolutional layer were directly passed to the classification models. In this paper, convolutional long short-term memory (ConvLSTM) layer is used in order to encode the spatial dependency among the feature maps obtained from the last convolutional layer of the CNN and to improve the image representational capability of the model. Additionally, the squeeze-and-excitation (SE) block, a spatial attention mechanism, is used to allocate weights to important local features. These two mechanisms are employed on three popular CNN models - VGG19, InceptionV3, and MobileNet to improve their classification strength. Finally, the Sugeno fuzzy integral based ensemble method is used on these classifiers' outputs to enhance the detection accuracy further. For experiments, three chest X-ray datasets, which are very prevalent for COVID-19 detection, are considered. For all the three datasets, it is found that the results obtained by the proposed method are comparable to state-of-the-art methods. The code, along with the pre-trained models, can be found at https://github.com/colabpro123/CovidConvLSTM.

3.
Arch Comput Methods Eng ; 29(7): 5525-5567, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35729963

RESUMEN

Disease prediction from diagnostic reports and pathological images using artificial intelligence (AI) and machine learning (ML) is one of the fastest emerging applications in recent days. Researchers are striving to achieve near-perfect results using advanced hardware technologies in amalgamation with AI and ML based approaches. As a result, a large number of AI and ML based methods are found in the literature. A systematic survey describing the state-of-the-art disease prediction methods, specifically chronic disease prediction algorithms, will provide a clear idea about the recent models developed in this field. This will also help the researchers to identify the research gaps present there. To this end, this paper looks over the approaches in the literature designed for predicting chronic diseases like Breast Cancer, Lung Cancer, Leukemia, Heart Disease, Diabetes, Chronic Kidney Disease and Liver Disease. The advantages and disadvantages of various techniques are thoroughly explained. This paper also presents a detailed performance comparison of different methods. Finally, it concludes the survey by highlighting some future research directions in this field that can be addressed through the forthcoming research attempts.

4.
Multimed Tools Appl ; 81(7): 9331-9349, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35035264

RESUMEN

Breast cancer, the most common invasive cancer, causes deaths of thousands of women in the world every year. Early detection of the same is a remedy to lessen the death rate. Hence, screening of breast cancer in its early stage is utmost required. However, in the developing nations not many can afford the screening and detection procedures owing to its cost. Hence, an effective and less expensive way of detecting breast cancer is performed using thermography which, unlike other methods, can be used on women of various ages. To this end, we propose a computer aided breast cancer detection system that accepts thermal breast images to detect the same. Here, we use the pre-trained DenseNet121 model as a feature extractor to build a classifier for the said purpose. Before extracting features, we work on the original thermal breast images to get outputs using two edge detectors - Prewitt and Roberts. These two edge-maps along with the original image make the input to the DenseNet121 model as a 3-channel image. The thermal breast image dataset namely, Database for Mastology Research (DMR-IR) is used to evaluate performance of our model. We achieve the highest classification accuracy of 98.80% on the said database, which outperforms many state-of-the-art methods, thereby confirming the superiority of the proposed model. Source code of this work is available here: https://github.com/subro608/thermogram_breast_cancer.

5.
Sensors (Basel) ; 21(14)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34300388

RESUMEN

Handwritten keyword spotting (KWS) is of great interest to the document image research community. In this work, we propose a learning-free keyword spotting method following query by example (QBE) setting for handwritten documents. It consists of four key processes: pre-processing, vertical zone division, feature extraction, and feature matching. The pre-processing step deals with the noise found in the word images, and the skewness of the handwritings caused by the varied writing styles of the individuals. Next, the vertical zone division splits the word image into several zones. The number of vertical zones is guided by the number of letters in the query word image. To obtain this information (i.e., number of letters in a query word image) during experimentation, we use the text encoding of the query word image. The user provides the information to the system. The feature extraction process involves the use of the Hough transform. The last step is feature matching, which first compares the features extracted from the word images and then generates a similarity score. The performance of this algorithm has been tested on three publicly available datasets: IAM, QUWI, and ICDAR KWS 2015. It is noticed that the proposed method outperforms state-of-the-art learning-free KWS methods considered here for comparison while evaluated on the present datasets. We also evaluate the performance of the present KWS model using state-of-the-art deep features and it is found that the features used in the present work perform better than the deep features extracted using InceptionV3, VGG19, and DenseNet121 models.


Asunto(s)
Algoritmos , Almacenamiento y Recuperación de la Información , Escritura Manual , Humanos
6.
Comput Biol Med ; 135: 104585, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34229144

RESUMEN

The COVID-19 outbreak has resulted in a global pandemic and led to more than a million deaths to date. COVID-19 early detection is essential for its mitigation by controlling its spread from infected patients in communities through quarantine. Although vaccination has started, it will take time to reach everyone, especially in developing nations, and computer scientists are striving to come up with competent methods using image analysis. In this work, a classifier ensemble technique is proposed, utilizing Choquet fuzzy integral, wherein convolutional neural network (CNN) based models are used as base classifiers. It classifies chest X-ray images from patients with common Pneumonia, confirmed COVID-19, and healthy lungs. Since there are few samples of COVID-19 cases for training on a standard CNN model from scratch, we use the transfer learning scheme to train the base classifiers, which are InceptionV3, DenseNet121, and VGG19. We utilize the pre-trained CNN models to extract features and classify the chest X-ray images using two dense layers and one softmax layer. After that, we combine the prediction scores of the data from individual models using Choquet fuzzy integral to get the final predicted labels, which is more accurate than the prediction by the individual models. To determine the fuzzy-membership values of each classifier for the application of Choquet fuzzy integral, we use the validation accuracy of each classifier. The proposed method is evaluated on chest X-ray images in publicly available repositories (IEEE and Kaggle datasets). It provides 99.00%, 99.00%, 99.00%, and 99.02% average recall, precision, F-score, and accuracy, respectively. We have also evaluated the performance of the proposed model on an inter-dataset experimental setup, where chest X-ray images from another dataset (CMSC-678-ML-Project GitHub dataset) are fed to our trained model and we have achieved 99.05% test accuracy on this dataset. The results are better than commonly used classifier ensemble methods as well as many state-of-the-art methods.


Asunto(s)
COVID-19 , Aprendizaje Profundo , Redes Neurales de la Computación , COVID-19/diagnóstico , Humanos , Pandemias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...