Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38467522

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.

2.
Vasa ; 53(2): 87-108, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38461401

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar in the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended to promote and assist the set up of comprehensive exercise programmes and best advice for patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are described based on the current best evidence. The document ends by highlighting supervised exercise programme access disparities across Europe and the evidence gaps requiring further research.


Asunto(s)
Claudicación Intermitente , Enfermedad Arterial Periférica , Humanos , Claudicación Intermitente/terapia , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/terapia , Terapia por Ejercicio/efectos adversos , Terapia por Ejercicio/métodos , Ejercicio Físico , Europa (Continente) , Caminata
3.
Eur Heart J ; 45(15): 1303-1321, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38461405

RESUMEN

All guidelines worldwide strongly recommend exercise as a pillar of the management of patients affected by lower extremity peripheral artery disease (PAD). Exercise therapy in this setting presents different modalities, and a structured programme provides optimal results. This clinical consensus paper is intended for clinicians to promote and assist for the set-up of comprehensive exercise programmes to best advice in patients with symptomatic chronic PAD. Different exercise training protocols specific for patients with PAD are presented. Data on patient assessment and outcome measures are narratively described based on the current best evidence. The document ends by highlighting disparities in access to supervised exercise programmes across Europe and the series of gaps for evidence requiring further research.


Asunto(s)
Claudicación Intermitente , Enfermedad Arterial Periférica , Humanos , Claudicación Intermitente/terapia , Enfermedad Arterial Periférica/terapia , Terapia por Ejercicio/métodos , Ejercicio Físico , Europa (Continente) , Caminata
4.
Front Bioeng Biotechnol ; 12: 1324587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532879

RESUMEN

Background: Efficient gait assistance by augmentative exoskeletons depends on reliable control strategies. While numerous control methods and their effects on the metabolic cost of walking have been explored in the literature, the use of different exoskeletons and dissimilar protocols limit direct comparisons. In this article, we present and compare two controllers for hip exoskeletons with different synchronization paradigms. Methods: The implicit-synchronization-based approach, termed the Simple Reflex Controller (SRC), determines the assistance as a function of the relative loading of the feet, resulting in an emerging torque profile continuously assisting extension during stance and flexion during swing. On the other hand, the Hip-Phase-based Torque profile controller (HPT) uses explicit synchronization and estimates the gait cycle percentage based on the hip angle, applying a predefined torque profile consisting of two shorter bursts of assistance during stance and swing. We tested the controllers with 23 naïve healthy participants walking on a treadmill at 4 km ⋅ h-1, without any substantial familiarization. Results: Both controllers significantly reduced the metabolic rate compared to walking with the exoskeleton in passive mode, by 18.0% (SRC, p < 0.001) and 11.6% (HPT, p < 0.001). However, only the SRC led to a significant reduction compared to walking without the exoskeleton (8.8%, p = 0.004). The SRC also provided more mechanical power and led to bigger changes in the hip joint kinematics and walking cadence. Our analysis of mechanical powers based on a whole-body analysis suggested a reduce in ankle push-off under this controller. There was a strong correlation (Pearson's r = 0.778, p < 0.001) between the metabolic savings achieved by each participant with the two controllers. Conclusion: The extended assistance duration provided by the implicitly synchronized SRC enabled greater metabolic reductions compared to the more targeted assistance of the explicitly synchronized HPT. Despite the different assistance profiles and metabolic outcomes, the correlation between the metabolic reductions with the two controllers suggests a difference in individual responsiveness to assistance, prompting more investigations to explore the person-specific factors affecting assistance receptivity.

5.
Sports Med ; 54(2): 271-287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37902936

RESUMEN

Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.


Asunto(s)
Altitud , Hipoxia , Humanos , Femenino , Masculino , Ejercicio Físico/fisiología , Hormonas Esteroides Gonadales , Corazón , Consumo de Oxígeno/fisiología
6.
Ageing Res Rev ; 93: 102147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036102

RESUMEN

Cardinal motor symptoms in Parkinson's disease (PD) include bradykinesia, rest tremor and/or rigidity. This symptomatology can additionally encompass abnormal gait, balance and postural patterns at advanced stages of the disease. Besides pharmacological and surgical therapies, physical exercise represents an important strategy for the management of these advanced impairments. Traditionally, diagnosis and classification of such abnormalities have relied on partially subjective evaluations performed by neurologists during short and temporally scattered hospital appointments. Emerging sports medical methods, including wearable sensor-based movement assessment and computational-statistical analysis, are paving the way for more objective and systematic diagnoses in everyday life conditions. These approaches hold promise to facilitate customizing clinical trials to specific PD groups, as well as personalizing neuromodulation therapies and exercise prescriptions for each individual, remotely and regularly, according to disease progression or specific motor symptoms. We aim to summarize exercise benefits for PD with a specific emphasis on gait and balance deficits, and to provide an overview of recent advances in movement analysis approaches, notably from the sports science community, with value for diagnosis and prognosis. Although such techniques are becoming increasingly available, their standardization and optimization for clinical purposes is critically missing, especially in their translation to complex neurodegenerative disorders such as PD. We highlight the importance of integrating state-of-the-art gait and movement analysis approaches, in combination with other motor, electrophysiological or neural biomarkers, to improve the understanding of the diversity of PD phenotypes, their response to therapies and the dynamics of their disease progression.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Terapia por Ejercicio , Marcha , Progresión de la Enfermedad , Ejercicio Físico
7.
J Appl Biomech ; 40(1): 21-28, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37875253

RESUMEN

The purpose of this investigation was (1) to test the effect of movement restriction of the free leg during unilateral vertical jump on performance and power output comparing 2 different jump techniques: flexed (Classic technique) and straight (FC Luzern technique) free leg, and (2) to test the correlation between performance and power output obtained using these 2 techniques. Twenty elite soccer players performed squat (SJ) and countermovement (CMJ) jumps on each leg. The jump height and peak power output were compared between the 2 techniques for both legs. The jump height and peak power were significantly higher for the classic test for SJ and CMJ (P < .001) with no side effects or interactions. The angular range of motion of the free leg was higher for the Classic test than for the FC Lucerne test (P < .001), with no difference in the angular range of motion of the trunk. A moderate correlation was found between the 2 techniques on peak power (SJ: r = .626; CMJ: r = .649) and jump height (SJ: r = .742; CMJ: r = .891). Consequently, FC Lucerne technique, limiting the contribution of the free leg, is more appropriate to assess lower limb strength capacities during unilateral jump test.


Asunto(s)
Rendimiento Atlético , Fútbol , Humanos , Pierna , Músculo Esquelético , Movimiento , Fenómenos Biomecánicos , Fuerza Muscular
8.
Sports Med ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082199

RESUMEN

The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.

9.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37941198

RESUMEN

Accurate real-time estimation of the gait phase (GP) is crucial for many control methods in exoskeletons and prostheses. A class of approaches to GP estimation construct the phase portrait of a segment or joint angle, and use the normalized polar angle of this diagram to estimate the GP. Although several studies have investigated such methods, quantitative information regarding their performance is sparse. In this work, we assess the performance of 3 portrait-based methods in flat and inclined steady walking conditions, using quantitative metrics of accuracy, repeatability and linearity. Two methods use portraits of the hip angle versus angular velocity (AVP), and hip angle versus integral of the angle (IAP). In a novel third method, a linear transformation is applied to the portrait to improve its circularity (CSP). An independent heel-strike (HS) detection algorithm is employed in all algorithms, rather than assuming HSs to occur at a constant point on the portrait. The novel method shows improvements in all metrics, notably significant root-mean-square error reductions compared to IAP (-3%, p < 0.001) and AVP (-2.4%, p < 0.001) in slope, and AVP (-1.61%, p = 0.0015) in flat walking. A non-negligible inter-subject variability is observed between phase angles at HS (equivalent to up to 8.4% of error in the GP), highlighting the importance of explicit HS detection for portrait-based methods.


Asunto(s)
Marcha , Caminata , Humanos , Talón , Algoritmos , Fenómenos Biomecánicos
10.
Clin Biomech (Bristol, Avon) ; 107: 106042, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37451170

RESUMEN

BACKGROUND: The gait pattern of adults with class I obesity [30 ≤ body mass index < 35kg/m2] was characterized by altered three-dimensional ground reaction force signals compared to lean adults (18.5 ≤ body mass index < 25 kg/m2). However, results might not be generalizable to adults with severe obesity (class II and III; body mass index ≥ 35 kg/m2). Hence, the purpose of the present study was to investigate the differences in relative ground reaction force signals, i.e., normalized by body weight, between adults with severe obesity and lean adults using functional principal component analysis. METHODS: Thirteen lean and eighteen sedentary adults with severe obesity performed a 5-min walking trial (1.11 m/s) on an instrumented treadmill. The first five functional principal components of the relative force signals (mediolateral, anterior-posterior, and vertical directions) were obtained using functional principal component analysis. Functional principal component scores were compared between groups using an analysis of covariance with age as covariable. FINDINGS: Functional principal component analysis reported a statistically significant group effect for first functional principal component score for mediolateral (P = 0.004), and second and fifth functional principal component scores for anterior-posterior (P ≤ 0.02) force signals. Adults with severe obesity displayed a greater mediolateral force during most of the stance but similar magnitudes of the anterior-posterior and vertical forces compared to lean adults. INTERPRETATION: Therefore, increasing the obesity level accentuates differences in mediolateral force but promotes no specific changes in anterior-posterior force likely due to chronic loading adaptation.


Asunto(s)
Obesidad Mórbida , Adulto , Humanos , Caminata , Marcha , Obesidad , Índice de Masa Corporal , Fenómenos Biomecánicos
11.
Front Neurosci ; 17: 1119390, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152600

RESUMEN

Introduction: Parkinson's disease (PD) is characterized by an alteration of the walking gait, frequently including a slower self-selected walking speed (SSWS). Although the reduction of walking speed is inherent to people with PD, such speed reduction also represents a potential confounding factor that might partly explain the observed gait differences between PD and control participants. Methods: In this study, each participant walked along a 25 m level corridor during which vertical ground reaction force signals were recorded using shoes equipped with eight pressure sensors. Vertical ground reaction force signals (using statistical parametric mapping) and temporal and kinetic variables as well as their related variability and asymmetry (using Student's t-test) were compared between PD (n = 54) and walking-speed-matched control subjects (n = 39). Results: Statistical parametric mapping did not yield significant differences between PD and control groups for the vertical ground reaction force signal along the walking stance phase. Stride time and single support time (equivalent to swing time) were shorter and peak vertical ground reaction force was larger in PD patients compared to controls (p ≤ 0.05). However, the single support time was no longer different between people with PD and healthy subjects when expressed relatively to stride time (p = 0.07). While single support, double support, and stance times were significantly more variable and asymmetric for PD than for the control group (p ≤ 0.05), stride time was similar (p ≥ 0.07). Discussion: These results indicate that at matched SSWS, PD patients adopt a higher cadence than control participants. Moreover, the temporal subdivision of the walking gait of people with PD is similar to healthy individuals but the coordination during the double support phase is different. Hence, this study indicates that isolating the speed factor is crucial in gait analysis for PD.

12.
Sci Rep ; 13(1): 8236, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217664

RESUMEN

The aim of this study was to examine how running biomechanics (spatiotemporal and kinetic variables) adapt with exhaustion during treadmill runs at 90, 100, 110, and 120% of the peak aerobic speed (PS) of a maximal incremental aerobic test. Thirteen male runners performed a maximal incremental aerobic test on an instrumented treadmill to determine their PS. Biomechanical variables were evaluated at the start, mid, and end of each run until volitional exhaustion. The change of running biomechanics with fatigue was similar among the four tested speeds. Duty factor and contact and propulsion times increased with exhaustion (P ≤ 0.004; F ≥ 10.32) while flight time decreased (P = 0.02; F = 6.67) and stride frequency stayed unchanged (P = 0.97; F = 0.00). A decrease in vertical and propulsive peak forces were obtained with exhaustion (P ≤ 0.002; F ≥ 11.52). There was no change in the impact peak with exhaustion (P = 0.41; F = 1.05). For runners showing impact peaks, the number of impact peaks increased (P ≤ 0.04; [Formula: see text] ≥ 6.40) together with the vertical loading rate (P = 0.005; F = 9.61). No changes in total, external, and internal positive mechanical work was reported with exhaustion (P ≥ 0.12; F ≤ 2.32). Results suggest a tendency towards a "smoother" vertical and horizontal running pattern with exhaustion. A smoother running pattern refers to the development of protective adjustments, leading to a reduction of the load applied to the musculoskeletal system at each running step. This transition seemed continuous between the start and end of the running trials and could be adopted by the runners to decrease the muscle force level during the propulsion phase. Despite these changes with exhaustion, there were no changes in either gesture speed (no alteration of stride frequency) or positive mechanical work, advocating that runners unconsciously organize themselves to maintain a constant whole-body mechanical work output.


Asunto(s)
Prueba de Esfuerzo , Fatiga , Masculino , Humanos , Aclimatación , Fenómenos Biomecánicos , Músculos
13.
Sci Rep ; 13(1): 5007, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973387

RESUMEN

The study aimed to compare the ankle muscles activation, biomechanics and energetics of running in male runners during submaximal level run using minimalist (MinRS) and traditional cushioned (TrdRS) running shoes. During 45-min running in MinRS and TrdRS, the ankle muscles pre- and co-activation, biomechanics, and energetics of running of 16 male endurance runners (25.5 ± 3.5 yr) were assessed using surface electromyography (tibialis anterior and gastrocnemius lateralis), instrumented treadmill and indirect calorimetry, respectively. The net energy cost of running (Cr) was similar for both conditions (P = 0.25) with a significant increase over time (P < 0.0001). Step frequency (P < 0.001), and total mechanical work (P = 0.001) were significantly higher in MinRS than in TrdRS with no evolution over time (P = 0.28 and P = 0.85, respectively). The ankle muscles pre- and co-activation during the contact phase did not differ between the two shoe conditions (P ≥ 0.33) or over time (P ≥ 0.15). In conclusion, during 45-min running, Cr and muscle pre- and co-activation were not significantly different between MinRS and TrdRS with significantly higher step frequency and total mechanical work noted in the former than in the latter. Moreover, Cr significantly increased during the 45-min trial in both shoe conditions along with no significant change over time in muscle activation and biomechanical variables.


Asunto(s)
Pie , Carrera , Masculino , Humanos , Pie/fisiología , Zapatos , Extremidad Inferior/fisiología , Carrera/fisiología , Músculo Esquelético/fisiología , Fenómenos Biomecánicos/fisiología
14.
Sports Biomech ; : 1-17, 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36606626

RESUMEN

Machine learning (ML) was used to predict contact (tc) and flight (tf) time, duty factor (DF) and peak vertical force (Fv,max) from IMU-based estimations. One hundred runners ran on an instrumented treadmill (9-13 km/h) while wearing a sacral-mounted IMU. Linear regression (LR), support vector regression and two-layer neural-network were trained (80 participants) using IMU-based estimations, running speed, stride frequency and body mass. Predictions (remaining 20 participants) were compared to gold standard (kinetic data collected using the force plate) by calculating the mean absolute percentage error (MAPE). MAPEs of Fv,max did not significantly differ among its estimation and predictions (P = 0.37), while prediction MAPEs for tc, tf and DF were significantly smaller than corresponding estimation MAPEs (P ≤ 0.003). There were no significant differences among prediction MAPEs obtained from the three ML models (P ≥ 0.80). Errors of the ML models were equal to or smaller than (≤32%) the smallest real difference for the four variables, while errors of the estimations were not (15-45%), indicating that ML models were sufficiently accurate to detect a clinically important difference. The simplest ML model (LR) should be used to improve the accuracy of the IMU-based estimations. These improvements may be beneficial when monitoring running-related injury risk factors in real-world settings.

15.
Int J Sports Physiol Perform ; 18(2): 213-217, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640773

RESUMEN

PURPOSE: To compare the acute performance and psychophysiological responses of repeated cycling sprints to exhaustion with a short exercise-to-rest ratio (1:6), between different effort durations and inspired oxygen fractions. METHODS: On separate visits, 10 active participants completed 6 repeated cycling sprint exercises to exhaustion with 3 different effort durations (5, 10, and 20 s) and 2 conditions of inspired oxygen (20.9% and 13.6%). Exercise-to-rest ratio was 1:6 for all trials (ie, 5:30, 10:60, and 20:120). Vastus lateralis muscle oxygenation (near-infrared spectroscopy), blood lactate concentration, and lower-limb and breathing discomfort, using ratings of perceived exertion, were measured. RESULTS: Number of sprints and peak power output decreased while blood lactate increased (all P < .001) during 5:30 compared with 10:60 or 20:120. No condition or interaction effects were reported for blood lactate and exercise-related sensation. Muscle deoxyhemoglobin increased (P < .001) and total hemoglobin decreased (P = .002) during sprint with increasing sprint duration (no condition or interaction). CONCLUSION: During repeated-sprint exercise to exhaustion with a short exercise-to-rest ratio, the psychophysiological responses did not differ between normoxia and moderate hypoxia, probably due to an extended recovery period. It means that hypoxia did not modify repeated-sprint exercise performance with a short exercise-to-rest ratio. The sprint duration was the primary underlying factor of the observed differences in performance and muscle oxygenation reported between the repeated-sprint exercise sessions.


Asunto(s)
Rendimiento Atlético , Hipoxia , Humanos , Ejercicio Físico , Oxígeno , Músculo Cuádriceps , Consumo de Oxígeno/fisiología , Ácido Láctico , Rendimiento Atlético/fisiología
16.
Scand J Med Sci Sports ; 33(2): 169-177, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36310520

RESUMEN

This study aimed to (1) construct a statistical model (SMM) based on the duty factor (DF) to estimate the peak vertical ground reaction force ( F v , max ) and (2) to compare the estimated F v , max to force plate gold standard (GSM). One hundred and fifteen runners ran at 9, 11, and 13 km/h. Force (1000 Hz) and kinematic (200 Hz) data were acquired with an instrumented treadmill and an optoelectronic system, respectively, to assess force-plate and kinematic based DFs. SMM linearly relates F v , max to the inverse of DF because DF was analytically associated with the inverse of the average vertical force during ground contact time and the latter was very highly correlated to F v , max . No systematic bias and a 4% root mean square error (RMSE) were reported between GSM and SMM using force-plate based DF values when considering all running speeds together. Using kinematic based DF values, SMM reported a systematic but small bias (0.05BW) and a 5% RMSE when considering all running speeds together. These findings support the use of SMM to estimate F v , max during level treadmill runs at endurance speeds if underlying DF values are accurately measured.


Asunto(s)
Carrera , Humanos , Fenómenos Biomecánicos , Prueba de Esfuerzo , Estado Nutricional , Modelos Estadísticos , Marcha
17.
Med Sci Sports Exerc ; 55(2): 245-254, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36136604

RESUMEN

PURPOSE: This study investigates the effects of normobaric hypoxia on repeated sprint exercise (RSE) with different balance between oxidative (phosphocreatine and oxidative pathway) and glycolytic contributions. Therefore, performance and psychophysiological responses were compared during RSE to exhaustion with the same exercise-to-rest ratio (1:2) but different sprint durations (5, 10, or 20 s) either in normoxic (RSN) or hypoxic (RSH; F io2 = 0.13) conditions. METHODS: On separate visits, 10 active participants completed in random order three cycling RSN (5:10; 10:20 and 20:40) and three similar RSH sessions to exhaustion. Vastus lateralis muscle oxygenation was recorded by near-infrared spectroscopy. Blood lactate concentration, limb and breathing discomfort, and ratings of perceived exertion were measured. RESULTS: Total sprint number was smaller in hypoxia than in normoxia for 5:10 (20.8 ± 8.6 vs 14.7 ± 3.4; P = 0.014) and 10:20 (13.7 ± 6.3 vs 8.8 ± 2.5; P = 0.018) but not 20:40 (5.6 ± 1.9 vs 5.6 ± 2.5). The fatigue index was larger in hypoxia only for 5:10 (-43.5%, P < 0.001). Irrespective of condition, blood lactate concentration increased with the sprint duration with higher values for 20:40 than 5:10 (13.1 ± 2.7 vs 11.5 ± 2.2 mmoL·L -1 ; P = 0.027). Limb and breathing discomfort and ratings of perceived exertion did not differ in all RSE. Muscle oxygenation was mainly impacted by sprint duration (i.e., main effect of sprint duration on [HHb] min, [tHb] max, Δ[HHb], and Δ[tHb]) but not by hypoxia. The normoxia-to-hypoxia percentage decrease for total sprint number for 5:10 was correlated with the highest power output over 5 s ( R2 = 0.55; P = 0.013) and 10 s ( R2 = 0.53; P = 0.016). CONCLUSIONS: Hypoxia impairs repeated sprint ability when the oxidative but not the glycolytic contribution is substantial. The oxidative-glycolytic balance, influenced partly by sprint duration, is key during repeated sprint in hypoxia.


Asunto(s)
Rendimiento Atlético , Humanos , Rendimiento Atlético/fisiología , Hipoxia , Respiración , Lactatos , Estrés Oxidativo
19.
Front Physiol ; 13: 1044363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545285

RESUMEN

Duty factor (DF) and step frequency (SF) were previously defined as the key running pattern determinants. Hence, this study aimed to investigate the association of DF and SF on 1) the vertical and fore-aft ground reaction force signals using statistical parametric mapping; 2) the force related variables (peaks, loading rates, impulses); and 3) the spring-mass characteristics of the lower limb, assessed by computing the force-length relationship and leg stiffness, for treadmill runs at several endurance running speeds. One hundred and fifteen runners ran at 9, 11, and 13 km/h. Force data (1000 Hz) and whole-body three-dimensional kinematics (200 Hz) were acquired by an instrumented treadmill and optoelectronic system, respectively. Both lower DF and SF led to larger vertical and fore-aft ground reaction force fluctuations, but to a lower extent for SF than for DF. Besides, the linearity of the force-length relationship during the leg compression decreased with increasing DF or with decreasing SF but did not change during the leg decompression. These findings showed that the lower the DF and the higher the SF, the more the runner relies on the optimization of the spring-mass model, whereas the higher the DF and the lower the SF, the more the runner promotes forward propulsion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...