Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sports Sci Med ; 23(2): 326-341, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38841639

RESUMEN

In the recent past, practical blood flow restriction (pBFR) using non-pneumatic, usually elastic cuffs has been established as a cost-effective alternative to traditional blood flow restriction (BFR) using pneumatic cuffs, especially for training in large groups. This study investigated whether low-load resistance exercise with perceptually primed pBFR using an elastic knee wrap is suitable to induce similar motor performance fatigue as well as physiological and perceptual responses compared to traditional BFR using a pneumatic nylon cuff in males and females. In a randomized, counterbalanced cross-over study, 30 healthy subjects performed 4 sets (30-15-15-15 repetitions) of unilateral knee extensions at 20% of their one-repetition-maximum. In the pBFR condition, each individual was perceptually primed to a BFR pressure corresponding to 60% of their arterial occlusion pressure. Before and after exercise, maximal voluntary torque, maximal muscle activity, and cuff pressure-induced discomfort were assessed. Moreover, physiological (i.e., muscle activity, muscle oxygenation) and perceptual responses (i.e., effort and exercise-induced leg muscle pain) were recorded during exercise. Moderate correlations with no differences between pBFR and BFR were found regarding the decline in maximal voluntary torque and maximal muscle activity. Furthermore, no to very strong correlations between conditions, with no differences, were observed for muscle activity, muscle oxygenation, and perceptual responses during exercise sets. However, cuff pressure-induced discomfort was lower in the pBFR compared to the BFR condition. These results indicate that low-load resistance exercise combined with perceptually primed pBFR is a convenient and less discomfort inducing alternative to traditional BFR. This is especially relevant for BFR training with people who have a low cuff-induced discomfort tolerance.


Asunto(s)
Estudios Cruzados , Fatiga Muscular , Músculo Esquelético , Entrenamiento de Fuerza , Humanos , Femenino , Entrenamiento de Fuerza/métodos , Masculino , Fatiga Muscular/fisiología , Adulto , Adulto Joven , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Flujo Sanguíneo Regional , Torque , Mialgia/etiología , Mialgia/prevención & control , Percepción/fisiología , Consumo de Oxígeno , Terapia de Restricción del Flujo Sanguíneo/métodos , Electromiografía , Rodilla/fisiología
2.
BMC Sports Sci Med Rehabil ; 15(1): 134, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858237

RESUMEN

BACKGROUND: Practical blood flow restriction (pBFR) during exercise is a cost-saving alternative to traditional blood flow restriction using pneumatic cuffs, particularly when exercising in a group setting. Depending on the pBFR technique, several factors (e.g., cuff width, limb circumference) have already been shown to be of importance when applying the pBFR pressure. Given that elastic cuffs are often used for pBFR, the cuff stiffness might be an additional influencing factor. Therefore, the present study compared the acute effects of three elastic cuffs with identical width but different stiffness (high stiffness (HS), medium stiffness (MS), and low stiffness (LS)) on hemodynamic measures and perceived cuff pressure at rest. METHODS: In a randomized, counter-balanced cross-over study, 36 young and normotensive participants completed three experimental trials. After a 10-min rest period in supine position, the cuff was loosely and proximally applied to the right upper arm. Following baseline data recording, the cuff was successively tightened in 10%-increments with respect to the limb circumference (%overlap) until arterial blood flow was occluded. At baseline and during each %overlap, systolic peak blood flow velocity of the brachial artery, rating of perceived cuff pressure, as well as muscle oxygen saturation and total hemoglobin concentration of the biceps brachii muscle were recorded. RESULTS: The %overlap required to occlude arterial blood flow was different between the three cuffs (HS: 30.9 ± 3.8%, MS: 43.9 ± 6.1%, LS: 54.5 ± 8.3%). Furthermore, at 30% overlap, systolic peak blood flow velocity was lower when applying the HS (9.0 ± 10.9 cm∙s- 1) compared to MS (48.9 ± 21.9 cm∙s- 1) and LS cuff (62.9 ± 19.1 cm∙s- 1). Rating of perceived cuff pressure at 30% overlap was higher when using the HS (6.5 ± 1.5 arbitrary unit (a.u.)) compared to MS (5.1 ± 1.4 a.u.) and LS cuff (4.9 ± 1.5 a.u.) with no difference between the MS and LS cuff. However, muscle oxygen saturation and total hemoglobin concentration were not different between the three cuffs. CONCLUSIONS: The present study revealed that the cuff stiffness influenced blood flow velocity and arterial occlusion pressure. Therefore, cuff stiffness seems an important factor for the application of pBFR.

3.
Front Med (Lausanne) ; 10: 1147907, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215712

RESUMEN

Introduction: Activities of daily living, such as walking, are impaired in chronic low back pain (CLBP) patients compared to healthy individuals. Thereby, pain intensity, psychosocial factors, cognitive functioning and prefrontal cortex (PFC) activity during walking might be related to gait performance during single and dual task walking (STW, DTW). However, to the best of our knowledge, these associations have not yet been explored in a large sample of CLBP patients. Method: Gait kinematics (inertial measurement units) and PFC activity (functional near-infrared spectroscopy) during STW and DTW were measured in 108 CLBP patients (79 females, 29 males). Additionally, pain intensity, kinesiophobia, pain coping strategies, depression and executive functioning were quantified and correlation coefficients were calculated to determine the associations between parameters. Results: The gait parameters showed small correlations with acute pain intensity, pain coping strategies and depression. Stride length and velocity during STW and DTW were (slightly to moderately) positively correlated with executive function test performance. Specific small to moderate correlations were found between the gait parameters and dorsolateral PFC activity during STW and DTW. Conclusion: Patients with higher acute pain intensity and better coping skills demonstrated slower and less variable gait, which might reflect a pain minimization strategy. Psychosocial factors seem to play no or only a minor role, while good executive functions might be a prerequisite for a better gait performance in CLBP patients. The specific associations between gait parameters and PFC activity during walking indicate that the availability and utilization of brain resources are crucial for a good gait performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...