Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(46): e2302089120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37931105

RESUMEN

Ongoing cell therapy trials have demonstrated the need for precision control of donor cell behavior within the recipient tissue. We present a methodology to guide stem cell-derived and endogenously regenerated neurons by engineering the microenvironment. Being an "approachable part of the brain," the eye provides a unique opportunity to study neuron fate and function within the central nervous system. Here, we focused on retinal ganglion cells (RGCs)-the neurons in the retina are irreversibly lost in glaucoma and other optic neuropathies but can potentially be replaced through transplantation or reprogramming. One of the significant barriers to successful RGC integration into the existing mature retinal circuitry is cell migration toward their natural position in the retina. Our in silico analysis of the single-cell transcriptome of the developing human retina identified six receptor-ligand candidates, which were tested in functional in vitro assays for their ability to guide human stem cell-derived RGCs. We used our lead molecule, SDF1, to engineer an artificial gradient in the retina, which led to a 2.7-fold increase in donor RGC migration into the ganglion cell layer (GCL) and a 3.3-fold increase in the displacement of newborn RGCs out of the inner nuclear layer. Only donor RGCs that migrated into the GCL were found to express mature RGC markers, indicating the importance of proper structure integration. Together, these results describe an "in silico-in vitro-in vivo" framework for identifying, selecting, and applying soluble ligands to control donor cell function after transplantation.


Asunto(s)
Retina , Células Ganglionares de la Retina , Recién Nacido , Humanos , Células Madre , Neurogénesis , Movimiento Celular
2.
Cell Rep ; 42(2): 112091, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36763501

RESUMEN

Retinosomes are intracellular lipid bodies found in the retinal pigment epithelium (RPE). They contain retinyl esters (REs) and are thought to be involved in visual chromophore regeneration during dark adaptation and in case of chromophore depletion. However, key enzymes in chromophore regeneration, retinoid isomerase (RPE65), and lecithin:retinol acyltransferase (LRAT) are located in the endoplasmic reticulum (ER). The mechanism and the enzyme responsible for mobilizing REs from retinosomes remained unknown. Our study demonstrates that patatin-like phospholipase domain containing 2 (PNPLA2) mobilizes all-trans-REs from retinosomes. The absence of PNPLA2 in mouse eyes leads to a significant accumulation of lipid droplets in RPE cells, declined electroretinography (ERG) response, and delayed dark adaptation compared with those of WT control mouse. Our work suggests a function of PNPLA2 as an RE hydrolase in the RPE, mobilizing REs from lipid bodies and functioning as an essential component of the visual cycle.


Asunto(s)
Retinaldehído , Ésteres de Retinilo , Animales , Ratones , Electrorretinografía , Epitelio Pigmentado de la Retina , Vitamina A
3.
Ophthalmol Sci ; 3(1): 100225, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36339947

RESUMEN

Purpose: To describe the relationships between foveal structure and visual function in a cohort of individuals with foveal hypoplasia (FH) and to estimate FH grade and visual acuity using a deep learning classifier. Design: Retrospective cohort study and experimental study. Participants: A total of 201 patients with FH were evaluated at the National Eye Institute from 2004 to 2018. Methods: Structural components of foveal OCT scans and corresponding clinical data were analyzed to assess their contributions to visual acuity. To automate FH scoring and visual acuity correlations, we evaluated the following 3 inputs for training a neural network predictor: (1) OCT scans, (2) OCT scans and metadata, and (3) real OCT scans and fake OCT scans created from a generative adversarial network. Main Outcome Measures: The relationships between visual acuity outcomes and determinants, such as foveal morphology, nystagmus, and refractive error. Results: The mean subject age was 24.4 years (range, 1-73 years; standard deviation = 18.25 years) at the time of OCT imaging. The mean best-corrected visual acuity (n = 398 eyes) was equivalent to a logarithm of the minimal angle of resolution (LogMAR) value of 0.75 (Snellen 20/115). Spherical equivalent refractive error (SER) ranged from -20.25 diopters (D) to +13.63 D with a median of +0.50 D. The presence of nystagmus and a high-LogMAR value showed a statistically significant relationship (P < 0.0001). The participants whose SER values were farther from plano demonstrated higher LogMAR values (n = 382 eyes). The proportion of patients with nystagmus increased with a higher FH grade. Variability in SER with grade 4 (range, -20.25 D to +13.00 D) compared with grade 1 (range, -8.88 D to +8.50 D) was statistically significant (P < 0.0001). Our neural network predictors reliably estimated the FH grading and visual acuity (correlation to true value > 0.85 and > 0.70, respectively) for a test cohort of 37 individuals (98 OCT scans). Training the predictor on real OCT scans with metadata and fake OCT scans improved the accuracy over the model trained on real OCT scans alone. Conclusions: Nystagmus and foveal anatomy impact visual outcomes in patients with FH, and computational algorithms reliably estimate FH grading and visual acuity.

4.
Genes (Basel) ; 13(5)2022 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-35627310

RESUMEN

The retinal dystrophy phenotype associated with CDHR1 retinopathy is clinically heterogenous. In this study, we describe the clinical and molecular findings of a retinal dystrophy cohort (10 patients) attributed to autosomal recessive CDHR1 and report novel variants in populations not previously identified with CDHR1-related retinopathy. Seven patients had evaluations covering at least a three-year period. The mean age of individuals at first symptoms was 36 ± 8.5 years (range 5-45 years). Visual acuity at the last visit ranged from 20/20 to 20/2000 (mean LogMAR 0.8 or 20/125). Three clinical subgroups were identified: rod-cone dystrophy (RCD), cone-rod dystrophy (CRD), and maculopathy. Extinguished scotopic electroretinography responses were noted in the RCD patients. Macular involvement was noted in all patients and documented on color fundus photography, fundus autofluorescence, and optical coherence tomography. Notable asymmetry of the degree of macular atrophy was present in two patients. The possible association between CDHR1 variants and clinical findings was predicted using molecular modeling.


Asunto(s)
Proteínas Relacionadas con las Cadherinas , Distrofias de Conos y Bastones , Proteínas del Tejido Nervioso , Distrofias Retinianas , Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Distrofias de Conos y Bastones/genética , Electrorretinografía , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Fenotipo , Distrofias Retinianas/genética
5.
J Vis Exp ; (161)2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32744516

RESUMEN

The retinal pigment epithelium (RPE) is a specialized monolayer of cells strategically located between the retina and the choriocapillaris that maintain the overall health and structural integrity of the photoreceptors. The RPE is polarized, exhibiting apically and basally located receptors or channels, and performs vectoral transport of water, ions, metabolites, and secretes several cytokines. In vivo noninvasive measurements of RPE function can be made using direct-coupled ERGs (DC-ERGs). The methodology behind the DC-ERG was pioneered by Marmorstein, Peachey, and colleagues using a custom-built stimulation recording system and later demonstrated using a commercially available system. The DC-ERG technique uses glass capillaries filled with Hank's buffered salt solution (HBSS) to measure the slower electrical responses of the RPE elicited from light-evoked concentration changes in the subretinal space due to photoreceptor activity. The prolonged light stimulus and length of the DC-ERG recording make it vulnerable to drift and noise resulting in a low yield of useable recordings. Here, we present a fast, reliable method for improving the stability of the recordings while reducing noise by using vacuum pressure to reduce/eliminate bubbles that result from outgassing of the HBSS and electrode holder. Additionally, power line artifacts are attenuated using a voltage regulator/power conditioner. We include the necessary light stimulation protocols for a commercially available ERG system as well as scripts for analysis of the DC-ERG components: c-wave, fast oscillation, light peak, and off response. Due to the improved ease of recordings and rapid analysis workflow, this simplified protocol is particularly useful in measuring age-related changes in RPE function, disease progression, and in the assessment of pharmacological intervention.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de la radiación , Electrorretinografía , Luz , Epitelio Pigmentado de la Retina/fisiología , Epitelio Pigmentado de la Retina/efectos de la radiación , Envejecimiento/fisiología , Animales , Ratones
6.
Am J Pathol ; 190(7): 1505-1512, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32275905

RESUMEN

Diabetic retinopathy (DR) is a common complication of diabetes and a leading cause of blindness among the working-age population. Diabetic patients often experience functional deficits in dark adaptation, contrast sensitivity, and color perception before any microvascular pathologies on the fundus become detectable. Previous studies showed that the regeneration of 11-cis-retinal and visual pigment is impaired in a type 1 diabetes animal model, which negatively affects visual function at the early stage of DR. Here, Akita mice, type 1 diabetic model, were treated with the visual pigment chromophore, 9-cis-retinal. This treatment rescued a- and b-wave amplitudes of scotopic electroretinography responses, compared with vehicle-treated Akita mice. In addition, the administration of 9-cis-retinal alleviated oxidative stress significantly as shown by reduced 3-nitrotyrosine levels in the retina of Akita mice. Furthermore, the 9-cis-retinal treatment decreased retinal apoptosis as shown by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling and DNA fragment enzyme-linked immunosorbent assay. Overall, these findings showed that 9-cis-retinal administration restored visual pigment formation and decreased oxidative stress and retinal degeneration, which resulted in improved visual function in diabetic mice, suggesting that chromophore deficiency plays a causative role in visual defects in early DR.


Asunto(s)
Retinopatía Diabética/fisiopatología , Diterpenos/farmacología , Retina/efectos de los fármacos , Retinaldehído/farmacología , Animales , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Estrés Oxidativo/efectos de los fármacos , Retina/fisiopatología
7.
Am J Pathol ; 187(10): 2222-2231, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28734946

RESUMEN

Diabetic retinopathy is a common complication of diabetes mellitus. Diabetic patients experience functional deficits in dark adaptation, contrast sensitivity, and color perception before microvascular pathologies become apparent. Herein, we evaluated early changes in neural retinal function and in retinoid metabolism in the eye in diabetes. Streptozotocin-induced diabetic rats showed decreased a- and b-wave amplitudes of scotopic and photopic electroretinography responses 4 months after diabetes induction compared to nondiabetic controls. Although Western blot analysis revealed no difference in opsin expression, rhodopsin content was decreased in diabetic retinas, as shown by a difference in absorbance. Consistently, levels of 11-cis-retinal, the chromophore for visual pigments, were significantly lower in diabetic retinas compared to those in controls, suggesting a retinoid deficiency. Among visual cycle proteins, interphotoreceptor retinoid-binding protein and stimulated by retinoic acid 6 protein showed significantly lower levels in diabetic rats than those in nondiabetic controls. Similarly, serum levels of retinol-binding protein 4 and retinoids were significantly lower in diabetic rats. Overall, these results suggest that retinoid metabolism in the eye is impaired in type 1 diabetes, which leads to deficient generation of visual pigments and neural retinal dysfunction in early diabetes.


Asunto(s)
Retinopatía Diabética/metabolismo , Retinopatía Diabética/patología , Rodopsina/metabolismo , Animales , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Retinopatía Diabética/sangre , Retinopatía Diabética/complicaciones , Modelos Animales de Enfermedad , Masculino , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología , Ratas Wistar , Retina/patología , Retina/fisiopatología , Retinaldehído/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vías Visuales/metabolismo , Vías Visuales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...