Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Contact (Thousand Oaks) ; 5: 251525642210970, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35757017

RESUMEN

Lysosomes serve as cellular degradation and signaling centers that coordinate the turnover of macromolecules with cell metabolism. The adaptation of cellular lysosome content and activity via the induction of lysosome biogenesis is therefore key to cell physiology and to counteract disease. Previous work has established a pathway for the induction of lysosome biogenesis in signaling-inactive starved cells that is based on the repression of mTORC1-mediated nutrient signaling. How lysosomal biogenesis is facilitated in signaling-active fed cells is poorly understood. A recent study by Malek et al (Malek et al, 2022) partially fills this gap by unraveling a nutrient signaling-independent pathway for lysosome biogenesis that operates in signaling-active cells. This pathway involves the receptor-mediated activation of phospholipase C, inositol (1,4,5)-triphosphate (IP3)-triggered release of calcium ions from endoplasmic reticulum stores, and the calcineurin-induced activation of transcription factor EB (TFEB) and its relative TFE3 to induce lysosomal gene expression independent of calcium in the lysosome lumen. These findings contribute to our understanding of how lysosome biogenesis and function are controlled in response to environmental changes and cell signaling and may conceivably be of relevance for our understanding and the treatment of lysosome-related diseases as well as for aging and neurodegeneration.

2.
J Biol Chem ; 298(3): 101740, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35182526

RESUMEN

Lysosomes serve as dynamic regulators of cell and organismal physiology by integrating the degradation of macromolecules with receptor and nutrient signaling. Previous studies have established that activation of the transcription factor EB (TFEB) and transcription factor E3 (TFE3) induces the expression of lysosomal genes and proteins in signaling-inactive starved cells, that is, under conditions when activity of the master regulator of nutrient-sensing signaling mechanistic target of rapamycin complex 1 is repressed. How lysosome biogenesis is triggered in signaling-active cells is incompletely understood. Here, we identify a role for calcium release from the lumen of the endoplasmic reticulum in the control of lysosome biogenesis that is independent of mechanistic target of rapamycin complex 1. We show using functional imaging that calcium efflux from endoplasmic reticulum stores induced by inositol triphosphate accumulation upon depletion of inositol polyphosphate-5-phosphatase A, an inositol 5-phosphatase downregulated in cancer and defective in spinocerebellar ataxia, or receptor-mediated phospholipase C activation leads to the induction of lysosome biogenesis. This mechanism involves calcineurin and the nuclear translocation and elevated transcriptional activity of TFEB/TFE3. Our findings reveal a crucial function for inositol polyphosphate-5-phosphatase A-mediated triphosphate hydrolysis in the control of lysosome biogenesis via TFEB/TFE3, thereby contributing to our understanding how cells are able to maintain their lysosome content under conditions of active receptor and nutrient signaling.


Asunto(s)
Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Calcio , Retículo Endoplásmico , Lisosomas , Polifosfatos , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Calcineurina/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Inositol/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Polifosfatos/metabolismo
3.
Nat Commun ; 12(1): 2673, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976123

RESUMEN

Vesicular traffic and membrane contact sites between organelles enable the exchange of proteins, lipids, and metabolites. Recruitment of tethers to contact sites between the endoplasmic reticulum (ER) and the plasma membrane is often triggered by calcium. Here we reveal a function for calcium in the repression of cholesterol export at membrane contact sites between the ER and the Golgi complex. We show that calcium efflux from ER stores induced by inositol-triphosphate [IP3] accumulation upon loss of the inositol 5-phosphatase INPP5A or receptor signaling triggers depletion of cholesterol and associated Gb3 from the cell surface, resulting in a blockade of clathrin-independent endocytosis (CIE) of Shiga toxin. This phenotype is caused by the calcium-induced dissociation of oxysterol binding protein (OSBP) from the Golgi complex and from VAP-containing membrane contact sites. Our findings reveal a crucial function for INPP5A-mediated IP3 hydrolysis in the control of lipid exchange at membrane contact sites.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Inositol/metabolismo , Lípidos de la Membrana/metabolismo , Animales , Transporte Biológico , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Endocitosis , Células HEK293 , Células HeLa , Humanos , Inositol Polifosfato 5-Fosfatasas/genética , Inositol Polifosfato 5-Fosfatasas/metabolismo , Microscopía Confocal , Fosfatos de Fosfatidilinositol/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Trihexosilceramidas/metabolismo
4.
Mol Cell ; 68(3): 566-580.e10, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-29056325

RESUMEN

The PI3K signaling pathway regulates cell growth and movement and is heavily mutated in cancer. Class I PI3Ks synthesize the lipid messenger PI(3,4,5)P3. PI(3,4,5)P3 can be dephosphorylated by 3- or 5-phosphatases, the latter producing PI(3,4)P2. The PTEN tumor suppressor is thought to function primarily as a PI(3,4,5)P3 3-phosphatase, limiting activation of this pathway. Here we show that PTEN also functions as a PI(3,4)P2 3-phosphatase, both in vitro and in vivo. PTEN is a major PI(3,4)P2 phosphatase in Mcf10a cytosol, and loss of PTEN and INPP4B, a known PI(3,4)P2 4-phosphatase, leads to synergistic accumulation of PI(3,4)P2, which correlated with increased invadopodia in epidermal growth factor (EGF)-stimulated cells. PTEN deletion increased PI(3,4)P2 levels in a mouse model of prostate cancer, and it inversely correlated with PI(3,4)P2 levels across several EGF-stimulated prostate and breast cancer lines. These results point to a role for PI(3,4)P2 in the phenotype caused by loss-of-function mutations or deletions in PTEN.


Asunto(s)
Neoplasias de la Mama/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositoles/metabolismo , Neoplasias de la Próstata/enzimología , Sistemas de Mensajero Secundario , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/farmacología , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Fosfohidrolasa PTEN/deficiencia , Fosfohidrolasa PTEN/genética , Fenotipo , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Sistemas de Mensajero Secundario/efectos de los fármacos , Factores de Tiempo
5.
J Immunol ; 196(2): 586-95, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26695371

RESUMEN

Cell migration is controlled by PI3Ks, which generate lipid messengers phosphatidylinositol-3,4,5-trisphosphate and phosphatidylinositol-3,4-bisphosphate [PI(3,4)P2] and consequently recruit pleckstrin homology (PH) domain-containing signaling proteins. PI3K inhibition impairs migration of normal and transformed B cells, an effect thought to partly underlie the therapeutic efficacy of PI3K inhibitors in treatment of B cell malignancies such as chronic lymphocytic leukemia. Although a number of studies have implicated phosphatidylinositol-3,4,5-trisphosphate in cell migration, it remains unknown whether PI(3,4)P2 plays a distinct role. Using the PI(3,4)P2-specific phosphatase inositol polyphosphate 4-phosphatase, we investigate the impact of depleting PI(3,4)P2 on migration behavior of malignant B cells. We find that cells expressing wild-type, but not phosphatase dead, inositol polyphosphate 4-phosphatase show impaired SDF-induced PI(3,4)P2 responses and reduced migration in Transwell chamber assays. Moreover, PI(3,4)P2 depletion in primary chronic lymphocytic leukemia cells significantly impaired their migration capacity. PI(3,4)P2 depletion reduced both overall motility and migration directionality in the presence of a stable chemokine gradient. Within chemotaxing B cells, the PI(3,4)P2-binding cytoskeletal regulator lamellipodin (Lpd) was found to colocalize with PI(3,4)P2 on the plasma membrane via its PH domain. Overexpression and knockdown studies indicated that Lpd levels significantly impact migration capacity. Moreover, the ability of Lpd to promote directional migration of B cells in an SDF-1 gradient was dependent on its PI(3,4)P2-binding PH domain. These results demonstrate that PI(3,4)P2 plays a significant role in cell migration via binding to specific cytoskeletal regulators such as Lpd, and they suggest that impairment of PI(3,4)P2-dependent processes may contribute to the therapeutic efficacy of PI3K inhibitors in B cell malignancies.


Asunto(s)
Proteínas Portadoras/metabolismo , Quimiotaxis de Leucocito/fisiología , Leucemia Linfocítica Crónica de Células B/patología , Proteínas de la Membrana/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Western Blotting , Línea Celular Tumoral , Citometría de Flujo , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Espectrometría de Masas , Microscopía Confocal , Transfección
6.
Nucleic Acids Res ; 43(20): 9663-79, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26464442

RESUMEN

PIP3 is synthesized by the Class I PI3Ks and regulates complex cell responses, such as growth and migration. Signals that drive long-term reshaping of cell phenotypes are difficult to resolve because of complex feedback networks that operate over extended times. PIP3-dependent modulation of mRNA accumulation is clearly important in this process but is poorly understood. We have quantified the genome-wide mRNA-landscape of non-transformed, breast epithelium-derived MCF10a cells and its response to acute regulation by EGF, in the presence or absence of a PI3Kα inhibitor, compare it to chronic activation of PI3K signalling by cancer-relevant mutations (isogenic cells expressing an oncomutant PI3Kα allele or lacking the PIP3-phosphatase/tumour-suppressor, PTEN). Our results show that whilst many mRNAs are changed by long-term genetic perturbation of PIP3 signalling ('butterfly effect'), a much smaller number do so in a coherent fashion with the different PIP3 perturbations. This suggests a subset of more directly regulated mRNAs. We show that mRNAs respond differently to given aspects of PIP3 regulation. Some PIP3-sensitive mRNAs encode PI3K pathway components, thus suggesting a transcriptional feedback loop. We identify the transcription factor binding motifs SRF and PRDM1 as important regulators of PIP3-sensitive mRNAs involved in cell movement.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Regulación de la Expresión Génica , Fosfatos de Fosfatidilinositol/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética , Mama/enzimología , Mama/metabolismo , Línea Celular , Factor de Crecimiento Epidérmico/farmacología , Retroalimentación Fisiológica , Femenino , Humanos , Mutación , Motivos de Nucleótidos , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo
8.
Cancer Res ; 73(22): 6621-31, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24078802

RESUMEN

Epithelial-to-mesenchymal transition (EMT) is a transdifferentiation process that converts epithelial cells into highly motile mesenchymal cells. This physiologic process occurs largely during embryonic development but is aberrantly reactivated in different pathologic situations, including fibrosis and cancer. We conducted a siRNA screening targeted to the human kinome with the aim of discovering new EMT effectors. With this approach, we have identified mTOR complex 1 (mTORC1), a nutrient sensor that controls protein and lipid synthesis, as a key regulator of epithelial integrity. Using a combination of RNAi and pharmacologic approaches, we report here that inhibition of either mTOR or RPTOR triggers EMT in mammary epithelial cells. This EMT was characterized by the induction of the mesenchymal markers such as fibronectin, vimentin, and PAI-1, together with the repression of epithelial markers such as E-cadherin and ZO-3. In addition, mTORC1 blockade enhanced in vivo migratory properties of mammary cells and induced EMT independent of the TGF-ß pathway. Finally, among the transcription factors known to activate EMT, both ZEB1 and ZEB2 were upregulated following mTOR repression. Their increased expression correlated with a marked reduction in miR-200b and miR-200c mRNA levels, two microRNAs known to downregulate ZEB1 and ZEB2 expression. Taken together, our findings unravel a novel function for mTORC1 in maintaining the epithelial phenotype and further indicate that this effect is mediated through the opposite regulation of ZEB1/ZEB2 and miR-200b and miR-200c. Furthermore, these results suggest a plausible etiologic explanation for the progressive pulmonary fibrosis, a frequent adverse condition associated with the therapeutic use of mTOR inhibitors.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Complejos Multiproteicos/fisiología , Serina-Treonina Quinasas TOR/fisiología , Animales , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Células Cultivadas , Embrión de Pollo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Células MCF-7 , Diana Mecanicista del Complejo 1 de la Rapamicina , MicroARNs/metabolismo , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Invasividad Neoplásica , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Proteínas Represoras/metabolismo , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/fisiología , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
9.
PLoS One ; 8(10): e75045, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24124465

RESUMEN

We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (α, ß, δ and γ) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110α, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110ß>>α>δ with undetectable p110γ. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110α-, but not ß- or δ- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110α, but not ß- or δ- activity. In the presence of single, endogenous alleles of onco-mutant p110α (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110α inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/-) cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110ß, but not α- or δ- activity; in PTEN(-/-) MCF10a it remained, like the parental cells, p110α-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110α is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110α augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110ß function in the absence of PTEN.


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Línea Celular , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/farmacología , Femenino , Humanos , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
10.
Mol Cell ; 49(6): 1049-59, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23395000

RESUMEN

As solid tumors expand, oxygen and nutrients become limiting owing to inadequate vascularization and diffusion. How malignant cells cope with this potentially lethal metabolic stress remains poorly understood. We found that glucose shortage associated with malignant progression triggers apoptosis through the endoplasmic reticulum (ER) unfolded protein response (UPR). ER stress is in part caused by reduced glucose flux through the hexosamine pathway. Deletion of the proapoptotic UPR effector CHOP in a mouse model of K-ras(G12V)-induced lung cancer increases tumor incidence, strongly supporting the notion that ER stress serves as a barrier to malignancy. Overcoming this barrier requires the selective attenuation of the PERK-CHOP arm of the UPR by the molecular chaperone p58(IPK). Furthermore, p58(IPK)-mediated adaptive response enables cells to benefit from the protective features of chronic UPR. Altogether, these results show that ER stress activation and p58(IPK) expression control the fate of malignant cells facing glucose shortage.


Asunto(s)
Apoptosis , Transformación Celular Neoplásica/metabolismo , Glucosa/deficiencia , Chaperonas Moleculares/fisiología , Factor de Transcripción CHOP/metabolismo , eIF-2 Quinasa/metabolismo , Acetilgalactosamina/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Factor Neurotrófico Derivado de la Línea Celular Glial/fisiología , Transportador de Glucosa de Tipo 1/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Respuesta de Proteína Desplegada
11.
Cancer Res ; 72(6): 1449-58, 2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22271686

RESUMEN

CD44 is a marker of cancer stem-like cells and epithelial-mesenchymal transition that is overexpressed in many cancer types, including thyroid carcinoma. At extracellular and intramembranous domains, CD44 undergoes sequential metalloprotease- and γ-secretase-mediated proteolytic cleavage, releasing the intracellular protein fragment CD44-ICD, which translocates to the nucleus and activates gene transcription. Here, we show that CD44-ICD binds to the transcription factor CREB, increasing S133 phosphorylation and CREB-mediated gene transcription. CD44-ICD enhanced CREB recruitment to the cyclin D1 promoter, promoting cyclin D1 transcription and cell proliferation. Thyroid carcinoma cells harboring activated RET/PTC, RAS, or BRAF oncogenes exhibited CD44 cleavage and CD44-ICD accumulation. Chemical blockade of RET/PTC, BRAF, metalloprotease, or γ-secretase were each sufficient to blunt CD44 processing. Furthermore, thyroid cancer cell proliferation was obstructed by RNA interference-mediated knockdown of CD44 or inhibition of γ-secretase and adoptive CD44-ICD overexpression rescued cell proliferation. Together, these findings reveal a CD44-CREB signaling pathway that is needed to sustain cancer cell proliferation, potentially offering new molecular targets for therapeutic intervention in thyroid carcinoma.


Asunto(s)
Carcinoma Papilar/patología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Receptores de Hialuranos/metabolismo , Proteolisis , Neoplasias de la Tiroides/patología , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/genética , Animales , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Humanos , Metaloproteasas/antagonistas & inhibidores , Metaloproteasas/genética , Oncogenes/efectos de los fármacos , Fosforilación , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Ratas , Transducción de Señal , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/metabolismo , Transcripción Genética
12.
PLoS One ; 5(6): e10977, 2010 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-20544018

RESUMEN

BACKGROUND: Cellular cholesterol is a vital component of the cell membrane. Its concentration is tightly controlled by mechanisms that remain only partially characterized. In this study, we describe a late endosome/lysosomes-associated protein whose expression level affects cellular free cholesterol content. METHODOLOGY/PRINCIPAL FINDINGS: Using a restricted proteomic analysis of detergent-resistant membranes (DRMs), we have identified a protein encoded by gene C11orf59. It is mainly localized to late endosome/lysosome (LE/LY) compartment through N-terminal myristoylation and palmitoylation. We named it Pdro for protein associated with DRMs and endosomes. Very recently, three studies have reported on the same protein under two other names: the human p27RF-Rho that regulates RhoA activation and actin dynamics, and its rodent orthologue p18 that controls both LE/LY dynamics through the MERK-ERK pathway and the lysosomal activation of mammalian target of rapamycin complex 1 by amino acids. We found that, consistent with the presence of sterol-responsive element consensus sequences in the promoter region of C11orf59, Pdro mRNA and protein expression levels are regulated positively by cellular cholesterol depletion and negatively by cellular cholesterol loading. Conversely, Pdro is involved in the regulation of cholesterol homeostasis, since its depletion by siRNA increases cellular free cholesterol content that is accompanied by an increased cholesterol efflux from cells. On the other hand, cells stably overexpressing Pdro display reduced cellular free cholesterol content. Pdro depletion-mediated excess cholesterol results, at least in part, from a stimulated low-density lipoprotein (LDL) uptake and an increased cholesterol egress from LE/LY. CONCLUSIONS/SIGNIFICANCE: LDL-derived cholesterol release involves LE/LY motility that is linked to actin dynamics. Because Pdro regulates these two processes, we propose that modulation of Pdro expression in response to sterol levels regulates LDL-derived cholesterol through both LDL uptake and LE/LY dynamics, to ultimately control free cholesterol homeostasis.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Endosomas/metabolismo , Homeostasis , Lisosomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Transporte Biológico , Proteínas Portadoras/química , Proteínas Portadoras/genética , Cartilla de ADN , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Técnicas de Silenciamiento del Gen , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lipoproteínas LDL/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...