Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 12(11): e9558, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36425910

RESUMEN

Water availability is an important driver of bird population change, and its effects are likely to increase in coming decades under climate change. Here we assess effects of temperature, precipitation, and water area on wintering bird populations in Miyangaran Wetland in southwestern Iran. Modeling methods including, generalized linear model (GLM) and hierarchical partitioning were used to examine the relative importance of variables. The number of wintering species, inhabiting the wetland, varied among years, ranging from 10 to 48 species. The total number of wintering birds showed a significant decreasing trend. A significant increasing trend was obtained for shorebirds, while waterfowl species were significantly decreased. The GLM showed that species abundance, richness, and diversity were significantly correlated with the standardized precipitation index (SPI), annual precipitation, and normalized difference water index (NDWI). Hierarchical partitioning analysis also identified NDWI, SPI, and annual precipitation as the most important variables with average independent effects of 35, 36 (p < .01) and 17% (p < .05), respectively. Our results revealed that the water area plays a major role in determining the structure of bird diversity and abundance, affecting both waterfowl and shorebirds.

2.
Sci Rep ; 12(1): 13579, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35945429

RESUMEN

Contact zones are considered as windows into the evolutionary process, allowing identification of factors influencing the evolutionary forces. Here, we combined phylogenetic and morphometric analyses to explore the evolutionary process affecting the taxonomic pattern of two subspecies of Testudo graeca (T. g. buxtoni and T. g. zarudnyi) across their contact zone in Central Iran. Our results showed high levels of phylogeographic and phenotypic variation in the contact zone. Two monophyletic clades including, clade 1 (T. g. zarudnyi) and clade 2 (T. g. buxtoni) were identified. Furthermore, four distinct subclades were found in T. g. buxtoni, across a wide geographic range. Divergence time analysis suggests that the two subspecies diverged from one another after the uplifting of the Zagros Mountains during the early Pliocene. Using neutrality tests and mismatch distribution analysis, we found no evidence of recent population expansion. Morphological associations among geographical populations in the contact zone found more distinctions, with some significant adaptive and non-adaptive morphological variations in these populations. These distinctive morphological populations can be considered as management units (MUs) to conserve the evolutionary potential of this species. Finer scale evolutionary studies are required to address the southern part of the Zagros mountain range, where the overlapping of mitochondrial clades and subclades has occurred. Such information is essential for effective conservation of T. graeca populations, preventing translocation or mixing of individuals without comprehensive genetic and morphological assessment.


Asunto(s)
ADN Mitocondrial , Tortugas , Animales , ADN Mitocondrial/genética , Variación Genética , Haplotipos , Humanos , Irán , Filogenia , Filogeografía , Tortugas/genética
3.
Sci Rep ; 12(1): 3293, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35228645

RESUMEN

The Eurasian lynx (Lynx lynx) is one of the widespread felids in Eurasia; however, relatively little is known about the Asian subspecies, and especially the Iranian populations, which comprise the most southwestern part of its range. The current study aimed to assess the phylogenetic status of Iranian populations relative to other populations of Eurasia, by sequencing a 613 bp fragment of the mitochondrial control region. In total, 44 haplotypes were recorded from 83 sequences throughout Eurasia, two of which were found in Iran. The haplotype (H1) is dominant in all Iranian lynx populations and identical to specimens from SW Russia and central China. The second haplotype (H2) is unique and was recorded only from Ghazvin Province in the central Alborz Mountains. Both haplotypes occur in Ghazvin Province. The phylogenetic tree and a median-joining network identified four clades (i.e., East, West 1, West 2, and South). These results are congruent with previous studies and suggest that Eurasian lynx was restricted to the southern part of its range during the glacial maxima and expanded from there to East Asia and to Europe during several independent re-colonization events. The Caucasus region most like plays an important role as a refugium during glacial cycles.


Asunto(s)
ADN Mitocondrial , Lynx , Animales , ADN Mitocondrial/genética , Variación Genética , Haplotipos , Irán , Lynx/genética , Filogenia
4.
Ecol Evol ; 11(21): 14813-14827, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765143

RESUMEN

Combining genetic data with ecological niche models is an effective approach for exploring climatic and nonclimatic environmental variables affecting spatial patterns of intraspecific genetic variation. Here, we adopted this combined approach to evaluate genetic structure and ecological niche of the Indian gray mongoose (Urva edwardsii) in Iran, as the most western part of the species range. Using mtDNA, we confirmed the presence of two highly differentiated clades. Then, we incorporated ensemble of small models (ESMs) using climatic and nonclimatic variables with genetic data to assess whether genetic differentiation among clades was coupled with their ecological niche. Climate niche divergence was also examined based on a principal component analysis on climatic factors only. The relative habitat suitability values predicted by the ESMs for both clades revealed their niche separation. Between-clade climate only niche comparison revealed that climate space occupied by clades is similar to some extent, but the niches that they utilize differ between the distribution ranges of clades. We found that in the absence of evidence for recent genetic exchanges, distribution models suggest the species occurs in different niches and that there are apparent areas of disconnection across the species range. The estimated divergence time between the two Iranian clades (4.9 Mya) coincides with the uplifting of the Zagros Mountains during the Early Pliocene. The Zagros mountain-building event seems to have prevented the distribution of U. edwardsii populations between the western and eastern parts of the mountains as a result of vicariance events. Our findings indicated that the two U. edwardsii genetic clades in Iran can be considered as two conservation units and can be utilized to develop habitat-specific and climate change-integrated management strategies.

5.
BMC Ecol Evol ; 21(1): 130, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34157982

RESUMEN

BACKGROUND: The orogeny of the eastern Mediterranean region has substantially affected ecological speciation patterns, particularly of mountain-dwelling species. Mountain vipers of the genus Montivipera are among the paramount examples of Mediterranean neo-endemism, with restricted ranges in the mountains of Anatolia, the Levant, Caucasus, Alborz, and Zagros. Here we explore the phylogenetic and ecological diversification of Montivipera to reconstruct its ecological niche evolution and biogeographic history. Using 177 sequences of three mitochondrial genes, a dated molecular phylogeny of mountain vipers was reconstructed. Based on 320 occurrence points within the entire range of the genus and six climatic variables, ecological niches were modelled and used to infer ancestral niche occupancy. In addition, the biogeographic history and ancestral states of the species were reconstructed across climate gradients. RESULTS: Dated phylogenetic reconstruction revealed that the ancestor of mountain vipers split into two major clades at around 12.18 Mya followed by multiple vicariance events due to rapid orogeny. Montivipera colonised coastal regions from a mountain-dwelling ancestor. We detected a highly complex ecological niche evolution of mountain vipers to temperature seasonality, a variable that also showed a strong phylogenetic signal and high contribution in niche occupation. CONCLUSION: Raising mountain belts in the Eastern Mediterranean region and subsequent remarkable changes in temperature seasonality have led to the formation of important centres of diversification and endemism in this biodiversity hotspot. High rates of niche conservatism, low genetic diversity, and segregation of ranges into the endemic distribution negatively influenced the adaptive capacity of mountain vipers. We suggest that these species should be considered as evolutionary significant units and priority species for conservation in Mediterranean mountain ecosystems.


Asunto(s)
Evolución Biológica , Ecosistema , Biodiversidad , Región Mediterránea , Filogenia
6.
Ecohealth ; 18(1): 76-83, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33783651

RESUMEN

Wild birds are important in the transmission of many zoonotic pathogens such as salmonella and avian influenza virus (AIV). The current study investigated the presence of bacterial and viral pathogens in birds foraging at an open landfill located in Central Iran. We collected blood and intestinal samples from five abundant species, including rook (Corvus frugilegus), European starling (Sturnus vulgaris), house sparrow (Passer domesticus), black-headed gull (Chroicocephalus ridibundus) and slender-billed gull Chroicocephalus genei for bacteriological and serological examinations. Escherichia coli was present in all of the five species, while Salmonella spp. was found in four species. Campylobacter jejuni, Yersinia spp., Cytrobacter spp., and Klebsiella spp. were other bacteria isolated from all of the five species. Competitive ELISA showed that 19 samples (32%) from the two gull species were positive for AIV. There was no detection of West Nile virus, or Newcastle disease virus in the 150 birds sampled. The prevalence of these pathogens in landfill birds indicated that a potential risk is posed to landfill workers and the surrounding community, adding to our limited knowledge of the potential for landfills to support disease vectors.


Asunto(s)
Gripe Aviar , Estorninos , Animales , Animales Salvajes , Humanos , Gripe Aviar/epidemiología , Irán/epidemiología , Salmonella , Instalaciones de Eliminación de Residuos
7.
Sci Rep ; 11(1): 597, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436694

RESUMEN

Species Distribution Models (SDMs) can be used to estimate potential geographic ranges and derive indices to assess species conservation status. However, habitat-specialist species require fine-scale range estimates that reflect resource dependency. Furthermore, local adaptation of intraspecific lineages to distinct environmental conditions across ranges have frequently been neglected in SDMs. Here, we propose a multi-stage SDM approach to estimate the distributional range and potential area of occupancy (pAOO) of Neurergus kaiseri, a spring-dwelling amphibian with two climatically-divergent evolutionary lineages. We integrate both broad-scale climatic variables and fine-resolution environmental data to predict the species distribution while examining the performance of lineage-level versus species-level modelling on the estimated pAOO. Predictions of habitat suitability at the landscape scale differed considerably between evolutionary level models. At the landscape scale, spatial predictions derived from lineage-level models showed low overlap and recognised a larger amount of suitable habitats than species-level model. The variable dependency of lineages was different at the landscape scale, but similar at the local scale. Our results highlight the importance of considering fine-scale resolution approaches, as well as intraspecific genetic structure of taxa to estimate pAOO. The flexible procedure presented here can be used as a guideline for estimating pAOO of other similar species.


Asunto(s)
Anfibios/clasificación , Anfibios/fisiología , Ecosistema , Modelos Teóricos , Estaciones del Año , Animales , Especificidad de la Especie
8.
Ecol Evol ; 10(20): 11372-11386, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33144971

RESUMEN

Interspecific hybridization increasingly occurs in the course of anthropogenic actions, such as species translocations and introductions, and habitat modifications or occurs in sympatric species due to the shortage of conspecific mates. Compared with anthropogenically caused hybridization, natural hybridization is more difficult to prove, but both play an important role in conservation. In this study, we detected hybridization of two gazelle sister species, Gazella bennettii (adapted to dry areas) and Gazella subgutturosa (adapted to open plains), in five habitat areas, where G. bennettii naturally occur in central Iran. The hybrids have a nuclear genomic identity (based on two introns), habitat preference, and phenotype of G. bennettii, but the mitochondrial identity (based on cyt b) of G. subgutturosa. We suggest that natural hybridization of female G. subgutturosa and male G. bennettii happened twice in central Iran in prehistoric times, based on the haplotype pattern that we found. However, we found indications of recent hybridization between both species under special circumstances, for example, in breeding centers, due to translocations, or in areas of sympatry due to the shortage of conspecific mates. Therefore, these two species must be kept separately in the breeding centers, and introduction of one of them into the habitat of the other must be strictly avoided.

9.
Sci Rep ; 9(1): 6239, 2019 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-30996234

RESUMEN

The combination of niche modelling and landscape genetics (genomics) helps to disentangle processes that have shaped population structure in the evolutionary past and presence of species. Herein, we integrate a comprehensive genomic dataset with ecological parameters and niche modelling for the threatened Kaiser's newt, a newt species adapted to mountain spring-ponds in Iran. Genomic analysis suggests the existence of two highly differentiated clades North and South of the Dez River. Genetic variation between the two clades (76.62%) was much greater than within clades (16.25%), suggesting that the Dez River prevented gene flow. River disconnectivity, followed by geographic distance, contributed mostly to genetic differentiation between populations. Environmental niche and landscape resistance had no significant influence. Though a significant difference between climatic niches occupied by each clade at the landscape-scale, habitat niches at the local-scale were equivalent. 'Niche similarity analysis' supported niche conservatism between the two clades despite the southward shift in the climatic niche of the Southern clade. Accordingly, populations of different clades may occupy different climatic niches within their ancestral niche. Our results indicate that the change of climatic conditions of geographically and genetically separated populations does not necessarily result in the shift of an ecological niche.


Asunto(s)
Ecosistema , Flujo Génico , Genética de Población/métodos , Polimorfismo de Nucleótido Simple , Ríos , Salamandridae/genética , Animales , Cambio Climático , Flujo Genético , Sitios Genéticos , Genotipo , Irán , Modelos Genéticos , Filogenia , Estanques , Estaciones del Año
10.
Sci Rep ; 9(1): 6332, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-31004118

RESUMEN

Climate change is among the most important drivers of biodiversity decline through shift or shrinkage in suitable habitat of species. Mountain vipers of the genus Montivipera are under extreme risk from climate changes given their evolutionary history and geographic distribution. In this study, we divided all Montivipera species into three phylogenetic-geographic Montivipera clades (PGMC; Bornmuelleri, Raddei and Xanthina) and applied an ensemble ecological niche modelling (ENM) approach under different climatic scenarios to assess changes in projected suitable habitats of these species. Based on the predicted range losses, we assessed the projected extinction risk of the species relative to IUCN Red List Criteria. Our result revealed a strong decline in suitable habitats for all PGMCs (63.8%, 79.3% and 96.8% for Xanthina, Raddei and Bornmuelleri, respectively, by 2070 and under 8.5 RCP scenario) with patterns of altitudinal range shifts in response to projected climate change. We found that the mountains close to the Mediterranean Sea are exposed to the highest threats in the future (84.6 ± 9.1 percent range loss). We also revealed that disjunct populations of Montivipera will be additionally highly isolated and fragmented in the future. We argue that leveraging climate niche projections into the risk assessment provides the opportunity to implement IUCN criteria and better assess forthcoming extinction risks of species.

11.
Ecol Evol ; 5(18): 3939-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26442617

RESUMEN

Ongoing habitat loss and fragmentation is considered a threat to biodiversity as it can create small, isolated populations that are at increased risk of extinction. Tree-dependent species are predicted to be highly sensitive to forest and woodland loss and fragmentation, but few studies have tested the influence of different types of landscape matrix on gene flow and population structure of arboreal species. Here, we examine the effects of landscape matrix on population structure of the sugar glider (Petaurus breviceps) in a fragmented landscape in southeastern South Australia. We collected 250 individuals across 12 native Eucalyptus forest remnants surrounded by cleared agricultural land or exotic Pinus radiata plantations and a large continuous eucalypt forest. Fifteen microsatellite loci were genotyped and analyzed to infer levels of population differentiation and dispersal. Genetic differentiation among most forest patches was evident. We found evidence for female philopatry and restricted dispersal distances for females relative to males, suggesting there is male-biased dispersal. Among the environmental variables, spatial variables including geographic location, minimum distance to neighboring patch, and degree of isolation were the most important in explaining genetic variation. The permeability of a cleared agricultural matrix to dispersing gliders was significantly higher than that of a pine matrix, with the gliders dispersing shorter distances across the latter. Our results added to previous findings for other species of restricted dispersal and connectivity due to habitat fragmentation in the same region, providing valuable information for the development of strategies to improve the connectivity of populations in the future.

12.
Bull Environ Contam Toxicol ; 94(5): 564-9, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25851218

RESUMEN

Mercury concentrations were examined in the liver, kidneys, and tail and breast feathers of common and green sandpipers from Zayanderud Dam in west-central Iran. The aim was to provide indirect information about habitat contamination. Tail feathers of both species had higher mercury levels compared to other tissues. Moreover, tissues of common sandpipers had significantly higher mercury concentrations compared to tissues of green sandpipers. Male specimens of both species had higher values of mercury compared to females. The pattern of larger body size-higher mercury body burden was not completely true in the current study. Smaller and shorter common sandpipers had higher mercury concentrations compared to taller and heavier green sandpipers. At the intraspecific level, body weight was positively correlated with mercury concentrations in tissues of common sandpipers. Based on the data presented here, it appears that these sandpipers, especially common sandpipers, are at potential risk from the toxic effects of mercury.


Asunto(s)
Charadriiformes/metabolismo , Monitoreo del Ambiente , Plumas/química , Mercurio/análisis , Animales , Femenino , Irán , Riñón/química , Hígado/química , Masculino
13.
Mol Phylogenet Evol ; 54(1): 122-35, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19647084

RESUMEN

The glider genus Petaurus comprises a group of arboreal and nocturnal marsupial species from New Guinea and Australia. Molecular data were generated in order to examine phylogenetic relationships among species within the genus and explore the time-scale of diversification and biogeographic history of the genus in Australia and New Guinea. All known species and subspecies of Petaurus (with the exception of P. biacensis) were sequenced for two mitochondrial genes (ND2 and ND4) and one nuclear marker (omega-globin gene). Phylogenetic analyses confirmed the monophyly of the genus relative to other petaurids and showed a sister relationship of P. australis to the rest of Petaurus. The analyses revealed that currently recognised species of Petaurus formed distinct mitochondrial DNA (mtDNA) clades. Considerable mtDNA diversity and seven distinct clades were identified within the species P. breviceps, with the distribution of each clade showing no correspondence with the distributional limits of known subspecies. Molecular dating analyses using BEAST suggested an early to mid-Miocene origin (18-24 mya) for the genus. Ancestral area reconstructions, using BayesTraits, did not resolve the location for the centre of origin of Petaurus, but provided evidence for at least one dispersal event from New Guinea to Australia that led to the evolution of extant Australian populations of P. breviceps, P. norfolcensis and P. gracilis. The timing of this dispersal event appears to pre-date the Pleistocene, adding to the growing number of studies that suggest faunal connections occurred between Australia and New Guinea in the Late Miocene to Pliocene period.


Asunto(s)
Evolución Molecular , Especiación Genética , Marsupiales/genética , Filogenia , Animales , Australia , Teorema de Bayes , Núcleo Celular/genética , ADN Mitocondrial/genética , Geografía , Marsupiales/clasificación , Nueva Guinea , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA