Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 230: 105704, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33316749

RESUMEN

Recurrent dinoflagellate blooms of Alexandrium catenella expose the economically and ecologically important Southern Rock Lobster in Tasmania to paralytic shellfish toxins (PST), and it is unknown if PST accumulation adversely affects lobster performance, health and catchability. In a controlled aquaculture setting, lobsters were fed highly contaminated mussels to accumulate toxin levels in the hepatopancreas (mean of 6.65 mg STX.2HCl equiv. kg-1), comparable to those observed in nature. Physiological impact of PST accumulation was comprehensively assessed by a range of behavioural (vitality score, righting ability and reflex impairment score), health (haemocyte count, bacteriology, gill necrosis and parasite load), nutritional (hepatopancreas index and haemolymph refractive index) and haemolymph biochemical (21 parameters including electrolytes, metabolites, and enzymes) parameters during a 63 day period of uptake and depuration of toxins. Exposure to PST did not result in mortality nor significant changes in the behavioural, health, or nutritional measures suggesting limited gross impact on lobster performance. Furthermore, most haemolymph biochemical parameters measured exhibited no significant difference between control and exposed animals. However, the concentration of potassium in the haemolymph increased with PST, whilst the concentration of lactate and the sodium:potassium ratio decreased with PST. In addition, exposed lobsters showed a hyperglycaemic response to PST exposure, indicative of stress. These findings suggest that PST accumulation results in some measurable indicators of stress for lobsters. However, these changes are likely within the adaptive range for Jasus edwardsii and do not result in a significant impairment of gross performance. Our findings support previous conclusions that crustaceans are relatively tolerant to PST and the implications for the lobster fishery are discussed.


Asunto(s)
Bioacumulación/efectos de los fármacos , Palinuridae/metabolismo , Saxitoxina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Bivalvos/metabolismo , Dinoflagelados/metabolismo , Cadena Alimentaria , Branquias/efectos de los fármacos , Branquias/metabolismo , Hemocitos/efectos de los fármacos , Hemocitos/metabolismo , Hemolinfa/metabolismo , Hepatopáncreas/efectos de los fármacos , Hepatopáncreas/metabolismo , Saxitoxina/metabolismo , Mariscos , Australia del Sur , Contaminantes Químicos del Agua/metabolismo
2.
Harmful Algae ; 95: 101818, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32439058

RESUMEN

Up to 13.6 mg STX.2HCl equiv. kg-1 of paralytic shellfish toxins (PST) have been found in the hepatopancreas of Southern Rock Lobster, Jasus edwardsii, on the east coast of Tasmania. Blooms of the toxic dinoflagellate Alexandrium catenella have been reported in this region since 2012. Experimental work was undertaken to improve the understanding of the uptake and depuration mechanisms involved. Adult male lobsters were fed highly toxic mussels (6 mg STX.2HCl equiv. kg-1) sourced from the impacted area. The apparent feed intake of the lobster was positively correlated to increasing PST levels in the hepatopancreas. Toxins accumulated rapidly in the hepatopancreas reaching a maximum of 9.0 mg STX.2HCl equiv. kg-1, then depurated at a rate of 7% per day once toxic fed was removed. However, PST were not detected at significant levels in the haemolymph of these animals. Notable increases occurred in the relative amount of several PST analogues in the hepatopancreas, including GTX2&3, C1&2 and several decarbomoyl toxins in comparison to the profile observed in contaminated mussel feed. The concentration of PST in lobster antennal glands was two orders of magnitude lower than concentrations found in the hepatopancreas. This is the first report of PST in lobster antennal glands which, along with the gills, represent possible excretion routes for PST. Implications for biotoxin risk monitoring are: lobsters will continue to feed during bloom periods and high concentrations of PST can occur; animal collection should be frequent at the start of a bloom in case of a rapid accumulation of PST; and non-lethal sampling is not possible as haemolymph PST levels do not reflect what is in the hepatopancreas.


Asunto(s)
Bivalvos , Saxitoxina , Animales , Alimentos Marinos , Mariscos/análisis , Distribución Tisular
4.
Toxicon ; 143: 44-50, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29326037

RESUMEN

In October 2012, paralytic shellfish toxins (PST) were detected in the hepatopancreas of Southern Rock Lobsters (Jasus edwardsii) collected from the east coast of Tasmania, Australia. This resulted in the first commercial closure in Australia for this species. Questions were raised on how the toxins were transferred to the lobsters, how long the toxins would persist, whether PST-contaminated hepatopancreas posed a risk to human health, and what management strategies could be applied. The aim of this study was to investigate whether PST-contaminated mussels are a potential vector enabling toxin accumulation in J. edwardsii and to collect information on toxin uptake, distribution and depuration rates and toxin profiles under controlled experimental settings. Lobsters were fed mussels naturally contaminated with PST for a period of 28 days in an experimental setting; following this, lobsters were allocated to either fed or starved treatment groups. PST were not detected in the tail tissue of lobsters at any stage of the experiment. Lobster hepatopancreas contained mean levels of 2.4 mg STX.2HCl eq/kg after 28 days of uptake, although substantial variability in total toxicity was observed. The PST profile of the hepatopancreas was similar to that of the contaminated mussels used as feed. Significant differences were noted in the PST depuration rates between fed and starved treatment groups. The daily depuration rate for total PST was estimated to be 0.019 and 0.013 mg STX.2HCl eq/kg for the fed and starved treatment groups respectively using a constant-rate decay model. After 42 days of depuration, total PST (STX equivalents) levels in the hepatopancreas of all lobsters were below 0.8 mg STX.2HCl eq/kg, which represents the regulatory level applied to bivalves. This result indicates that long-term holding to depurate PST may potentially be used as a risk management tool.


Asunto(s)
Palinuridae/metabolismo , Saxitoxina/metabolismo , Animales , Bivalvos/química , Cadena Alimentaria , Hepatopáncreas , Saxitoxina/análisis , Mariscos/análisis , Intoxicación por Mariscos/metabolismo , Tasmania , Distribución Tisular
5.
J Food Prot ; 81(2): 240-245, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29356586

RESUMEN

Paralytic shellfish toxin (PST) producing microalgal blooms have a significant economic impact on the Southern Rock Lobster ( Jasus edwardsii) fishery in Tasmania, Australia. The regulatory level of 0.8 mg of saxitoxin (STX) eq/kg in place for bivalve shellfish fisheries is applied to lobster hepatopancreas during blooms of toxic algae, resulting in harvest closures and ongoing risk management implications for the fishery. This cooking study was undertaken to inform a human health risk assessment, in conjunction with studies on the uptake and elimination of PST in J. edwardsii. Live lobsters in tanks were contaminated through consumption of PST-containing mussels harvested during an Alexandrium tamarense Group 1 bloom event. This resulted in a mean lobster hepatopancreas level of 2.83 ± 0.84 mg of STX·2HCl eq/kg. Other edible tissues contained negligible concentrations of toxin. PST concentrations in all tissues did not significantly change after boiling or steaming, although the amount of hepatopancreas available for consumption did decrease significantly with both cooking methods, because the tissue became more dispersed, resulting in an overall reduction in the toxin exposure per hepatopancreas consumed. The toxin profile was dominated by STX; gonyautoxin 2, 3; N-sulfocarbamoyl-gonyautoxin 2, 3 (C1,2); and gonyautoxin 5. No significant changes to the toxin profile were observed after either of the cooking methods. Pâté, bisque, and soufflé prepared from the hepatopancreas of toxic lobsters contained negligible levels of PST in each serving; on average, a serving of pâté contained 0.01 mg of STX·2HCl eq, whereas a serving of bisque or soufflé contained <0.01 mg of STX·2HCl eq. The findings of this study will inform a risk assessment of PST in J. edwardsii to determine risk management options for this fishery in Australia.


Asunto(s)
Bivalvos/parasitología , Culinaria , Palinuridae/química , Saxitoxina/análogos & derivados , Alimentos Marinos , Animales , Australia , Bivalvos/química , Dinoflagelados , Saxitoxina/análisis
6.
Food Microbiol ; 69: 196-203, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28941902

RESUMEN

Internationally human enteric viruses, such as norovirus (NoV) and hepatitis A virus (HAV), are frequently associated with shellfish related foodborne disease outbreaks, and it has been suggested that acceptable NoV limits based on end-point testing be established for this high risk food group. Currently, shellfish safety is generally managed through the use of indicators of faecal contamination. Between July 2014 and August 2015, a national prevalence survey for NoV and HAV was done in Australian oysters suitable for harvest. Two sampling rounds were undertaken to determine baseline levels of these viruses. Commercial Australian growing areas, represented by 33 oyster production regions in New South Wales, South Australia, Tasmania and Queensland, were included in the survey. A total of 149 and 148 samples were collected during round one and two of sampling, respectively, and tested for NoV and HAV by quantitative RT-PCR. NoV and HAV were not detected in oysters collected in either sampling round, indicating an estimated prevalence for these viruses in Australian oysters of <2% with a 95% confidence interval based on the survey design. The low estimated prevalence of foodborne viruses in Australian oysters was consistent with epidemiological evidence, with no oyster-related foodborne viral illness reported during the survey period.


Asunto(s)
Contaminación de Alimentos/análisis , Ostreidae/virología , Mariscos/virología , Virus/aislamiento & purificación , Animales , Australia/epidemiología , Contaminación de Alimentos/estadística & datos numéricos , Enfermedades Transmitidas por los Alimentos/epidemiología , Enfermedades Transmitidas por los Alimentos/virología , Virus/clasificación , Virus/genética , Virus/crecimiento & desarrollo
7.
J Food Prot ; 77(11): 1960-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25364931

RESUMEN

The first national survey of Australian wild-caught abalone was conducted between September 2012 and December 2013. The aim of the survey was to determine the presence of paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), and diarrhetic shellfish toxins (DSTs) in wild-caught abalone at levels above the current Codex marine biotoxin limits during the 2013 fishing season. Abalone (n = 190) were collected from 68 abalone-fishing blocks for which the combined annual harvest accounts for 80 % of Australian production. Concurrent seawater samples were collected and enumerated for potentially toxic phytoplankton. The foot and viscera tissues of each abalone sample were analyzed separately for PSTs, ASTs, and DSTs. No samples (abalone foot or viscera) contained toxins at levels exceeding the marine biotoxin limits stipulated by Codex. The resulting prevalence estimate suggests that less than 1.6 % of the commercially caught wild abalone population in Australia were contaminated with marine biotoxins at levels above the regulatory limit during the survey period. ASTs were detected at very low (trace) levels in the foot and viscera tissue of four and three abalone samples, respectively. To our knowledge, this represents the first reported detection of domoic acid in Australian abalone. PSTs also were detected at very low levels in 17 samples of abalone foot tissue and 6 samples of abalone viscera. The association between the low levels of ASTs and PSTs detected in abalone and the presence of potential toxin-producing phytoplankton in seawater samples was weak. DSTs were not detected in any abalone despite the detection of very low levels of DST-producing phytoplankton in a small number (9 of 77) of seawater samples. The results of this survey should be useful for public health risk assessments and provide additional evidence that the prevalence of marine biotoxins in Australian wild-caught abalone is very low.


Asunto(s)
Contaminación de Alimentos/análisis , Gastrópodos/química , Toxinas Marinas/análisis , Mariscos/análisis , Animales , Australia , Contaminación de Alimentos/estadística & datos numéricos , Gastrópodos/metabolismo , Toxinas Marinas/metabolismo , Agua de Mar/análisis
8.
Toxicon ; 90: 213-25, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25157803

RESUMEN

For the first time wild-caught Tasmanian abalone, Haliotis rubra, have been reported to contain paralytic shellfish toxins (PSTs). This observation followed blooms of the toxic dinoflagellate Gymnodinium catenatum. No illnesses were reported, but harvesting restrictions were enforced in commercial areas. Abalone were assayed using HPLC-FLD methodology based on AOAC official method 2005.06. An uncommon congener, deoxydecarbamoyl-STX (doSTX), was observed in addition to regulated PSTs as unassigned chromatographic peaks. A quantitative reference material was prepared from contaminated Tasmanian abalone viscera and ampouled at 54.2 µmol/L. The LD50 of doSTX via intraperitoneal injection was 1069 nmol/kg (95% confidence limits 983-1100 nmol/kg), indicating it is nearly 40 times less toxic than STX. A toxicity equivalence factor of 0.042 was generated using the mouse bioassay. Levels of PSTs varied among individuals from the same site, although the toxin profile remained relatively consistent. In the foot tissue, STX, decarbamoyl-STX and doSTX were identified. On a molar basis doSTX was the dominant congener in both foot and viscera samples. The viscera toxin profile was more complex, with other less toxic PST congeners observed and was similar to mussels from the same site. This finding implicates localised dinoflagellate blooms as the PST source in Tasmanian abalone.


Asunto(s)
Gastrópodos/metabolismo , Toxinas Marinas/metabolismo , Animales , Cromatografía Liquida , Toxinas Marinas/aislamiento & purificación , Toxinas Marinas/toxicidad , Estándares de Referencia , Espectrometría de Masas en Tándem , Tasmania
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...