Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Cell Rep ; 43(7): 114436, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38968069

RESUMEN

Single-gene missense mutations remain challenging to interpret. Here, we deploy scalable functional screening by sequencing (SEUSS), a Perturb-seq method, to generate mutations at protein interfaces of RUNX1 and quantify their effect on activities of downstream cellular programs. We evaluate single-cell RNA profiles of 115 mutations in myelogenous leukemia cells and categorize them into three functionally distinct groups, wild-type (WT)-like, loss-of-function (LoF)-like, and hypomorphic, that we validate in orthogonal assays. LoF-like variants dominate the DNA-binding site and are recurrent in cancer; however, recurrence alone does not predict functional impact. Hypomorphic variants share characteristics with LoF-like but favor protein interactions, promoting gene expression indicative of nerve growth factor (NGF) response and cytokine recruitment of neutrophils. Accessible DNA near differentially expressed genes frequently contains RUNX1-binding motifs. Finally, we reclassify 16 variants of uncertain significance and train a classifier to predict 103 more. Our work demonstrates the potential of targeting protein interactions to better define the landscape of phenotypes reachable by missense mutations.

2.
Cancer Lett ; 598: 217089, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964731

RESUMEN

Glutamine is a conditionally essential amino acid for the growth and survival of rapidly proliferating cancer cells. Many cancers are addicted to glutamine, and as a result, targeting glutamine metabolism has been explored clinically as a therapeutic approach. Glutamine-catalyzing enzymes are highly expressed in primary and metastatic head and neck squamous cell carcinoma (HNSCC). However, the nature of the glutamine-associated pathways in this aggressive cancer type has not been elucidated. Here, we explored the therapeutic potential of a broad glutamine antagonist, DRP-104 (sirpiglenastat), in HNSCC tumors and aimed at shedding light on glutamine-dependent pathways in this disease. We observed a potent antitumoral effect of sirpiglenastat in HPV- and HPV + HNSCC xenografts. We conducted a whole-genome CRISPR screen and metabolomics analyses to identify mechanisms of sensitivity and resistance to glutamine metabolism blockade. These approaches revealed that glutamine metabolism blockade results in the rapid buildup of polyunsaturated fatty acids (PUFAs) via autophagy nutrient-sensing pathways. Finally, our analysis demonstrated that GPX4 mediates the protection of HNSCC cells from accumulating toxic lipid peroxides; hence, glutamine blockade sensitizes HNSCC cells to ferroptosis cell death upon GPX4 inhibition. These findings demonstrate the therapeutic potential of sirpiglenastat in HNSCC and establish a novel link between glutamine metabolism and ferroptosis, which may be uniquely translated into targeted glutamine-ferroptosis combination therapies.

3.
Cancer Res Commun ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954773

RESUMEN

The comprehensive genomic analysis of the head and neck squamous cell carcinoma (HNSCC) oncogenome revealed the frequent loss of p16INK4A (CDKN2A) and amplification of cyclin D1 (CCND1) genes in most HPV negative HNSCC lesions. However, cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors have shown modest effects in the clinic. The aberrant activation of PI3K/mTOR pathway is highly prevalent in HNSCC, and recent clinical trials have shown promising clinical efficacy of mTOR inhibitors (mTORi) in the neoadjuvant and adjuvant settings but not in advanced HNSCC patients. By a kinome-wide CRISPR/Cas9 screen, we identified cell cycle inhibition as a synthetic lethal target for mTORi. Combination of mTORi and palbociclib, a CDK4/6 specific inhibitor, showed strong synergism in HNSCC-derived cells in vitro and in vivo. Remarkably, we found that adaptive increase in cyclin E1 (CCNE1) expression upon palbociclib treatment underlies the rapid acquired resistance to this CDK4/6 inhibitor. Mechanistically, mTORi inhibits the formation of eIF4G-CCNE1 mRNA complexes, with the consequent reduction in mRNA translation and CCNE1 protein expression. Our findings suggest that mTORi reverts the adaptive resistance to palbociclib. This provides a multimodal therapeutic option for HNSCC by co-targeting mTOR and CDK4/6, which in turn may halt the emergence of palbociclib resistance.

4.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38826258

RESUMEN

This article describes the Cell Maps for Artificial Intelligence (CM4AI) project and its goals, methods, standards, current datasets, software tools , status, and future directions. CM4AI is the Functional Genomics Data Generation Project in the U.S. National Institute of Health's (NIH) Bridge2AI program. Its overarching mission is to produce ethical, AI-ready datasets of cell architecture, inferred from multimodal data collected for human cell lines, to enable transformative biomedical AI research.

5.
Mol Ther ; 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38379282

RESUMEN

Small extracellular vesicles (EVs) are released by cells and deliver biologically active payloads to coordinate the response of multiple cell types in cutaneous wound healing. Here we used a cutaneous injury model as a donor of pro-reparative EVs to treat recipient diabetic obese mice, a model of impaired wound healing. We established a functional screen for microRNAs (miRNAs) that increased the pro-reparative activity of EVs and identified a down-regulation of miR-425-5p in EVs in vivo and in vitro associated with the regulation of adiponectin. We tested a cell type-specific reporter of a tetraspanin CD9 fusion with GFP to lineage map the release of EVs from macrophages in the wound bed, based on the expression of miR-425-5p in macrophage-derived EVs and the abundance of macrophages in EV donor sites. Analysis of different promoters demonstrated that EV release under the control of a macrophage-specific promoter was most abundant and that these EVs were internalized by dermal fibroblasts. These findings suggested that pro-reparative EVs deliver miRNAs, such as miR-425-5p, that stimulate the expression of adiponectin that has insulin-sensitizing properties. We propose that EVs promote intercellular signaling between cell layers in the skin to resolve inflammation, induce proliferation of basal keratinocytes, and accelerate wound closure.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38415197

RESUMEN

Over the past two decades Biomedical Engineering has emerged as a major discipline that bridges societal needs of human health care with the development of novel technologies. Every medical institution is now equipped at varying degrees of sophistication with the ability to monitor human health in both non-invasive and invasive modes. The multiple scales at which human physiology can be interrogated provide a profound perspective on health and disease. We are at the nexus of creating "avatars" (herein defined as an extension of "digital twins") of human patho/physiology to serve as paradigms for interrogation and potential intervention. Motivated by the emergence of these new capabilities, the IEEE Engineering in Medicine and Biology Society, the Departments of Biomedical Engineering at Johns Hopkins University and Bioengineering at University of California at San Diego sponsored an interdisciplinary workshop to define the grand challenges that face biomedical engineering and the mechanisms to address these challenges. The Workshop identified five grand challenges with cross-cutting themes and provided a roadmap for new technologies, identified new training needs, and defined the types of interdisciplinary teams needed for addressing these challenges. The themes presented in this paper include: 1) accumedicine through creation of avatars of cells, tissues, organs and whole human; 2) development of smart and responsive devices for human function augmentation; 3) exocortical technologies to understand brain function and treat neuropathologies; 4) the development of approaches to harness the human immune system for health and wellness; and 5) new strategies to engineer genomes and cells.

7.
Blood ; 143(8): 697-712, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38048593

RESUMEN

ABSTRACT: Aberrant expression of stem cell-associated genes is a common feature in acute myeloid leukemia (AML) and is linked to leukemic self-renewal and therapy resistance. Using AF10-rearranged leukemia as a prototypical example of the recurrently activated "stemness" network in AML, we screened for chromatin regulators that sustain its expression. We deployed a CRISPR-Cas9 screen with a bespoke domain-focused library and identified several novel chromatin-modifying complexes as regulators of the TALE domain transcription factor MEIS1, a key leukemia stem cell (LSC)-associated gene. CRISPR droplet sequencing revealed that many of these MEIS1 regulators coordinately controlled the transcription of several AML oncogenes. In particular, we identified a novel role for the Tudor-domain-containing chromatin reader protein SGF29 in the transcription of AML oncogenes. Furthermore, SGF29 deletion impaired leukemogenesis in models representative of multiple AML subtypes in multiple AML subtype models. Our studies reveal a novel role for SGF29 as a nononcogenic dependency in AML and identify the SGF29 Tudor domain as an attractive target for drug discovery.


Asunto(s)
Proteínas de Homeodominio , Leucemia Mieloide Aguda , Humanos , Proteínas de Homeodominio/genética , Cromatina/genética , Factores de Transcripción/genética , Proteína 1 del Sitio de Integración Viral Ecotrópica Mieloide/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Carcinogénesis
9.
bioRxiv ; 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37577681

RESUMEN

Understanding the consequences of single amino acid substitutions in cancer driver genes remains an unmet need. Perturb-seq provides a tool to investigate the effects of individual mutations on cellular programs. Here we deploy SEUSS, a Perturb-seq like approach, to generate and assay mutations at physical interfaces of the RUNX1 Runt domain. We measured the impact of 115 mutations on RNA profiles in single myelogenous leukemia cells and used the profiles to categorize mutations into three functionally distinct groups: wild-type (WT)-like, loss-of-function (LOF)-like and hypomorphic. Notably, the largest concentration of functional mutations (non-WT-like) clustered at the DNA binding site and contained many of the more frequently observed mutations in human cancers. Hypomorphic variants shared characteristics with loss of function variants but had gene expression profiles indicative of response to neural growth factor and cytokine recruitment of neutrophils. Additionally, DNA accessibility changes upon perturbations were enriched for RUNX1 binding motifs, particularly near differentially expressed genes. Overall, our work demonstrates the potential of targeting protein interaction interfaces to better define the landscape of prospective phenotypes reachable by amino acid substitutions.

10.
APL Bioeng ; 7(2): 026109, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37252678

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have the potential to become powerful tools for disease modeling, drug testing, and transplantation; however, their immaturity limits their applications. Transcription factor (TF) overexpression can improve hPSC-CM maturity, but identifying these TFs has been elusive. Toward this, we establish here an experimental framework for systematic identification of maturation enhancing factors. Specifically, we performed temporal transcriptome RNAseq analyses of progressively matured hPSC-derived cardiomyocytes across 2D and 3D differentiation systems and further compared these bioengineered tissues to native fetal and adult-derived tissues. These analyses revealed 22 TFs whose expression did not increase in 2D differentiation systems but progressively increased in 3D culture systems and adult mature cell types. Individually overexpressing each of these TFs in immature hPSC-CMs identified five TFs (KLF15, ZBTB20, ESRRA, HOPX, and CAMTA2) as regulators of calcium handling, metabolic function, and hypertrophy. Notably, the combinatorial overexpression of KLF15, ESRRA, and HOPX improved all three maturation parameters simultaneously. Taken together, we introduce a new TF cocktail that can be used in solo or in conjunction with other strategies to improve hPSC-CM maturation and anticipate that our generalizable methodology can also be implemented to identify maturation-associated TFs for other stem cell progenies.

11.
Sci Rep ; 13(1): 7678, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169829

RESUMEN

Cell-cycle control is accomplished by cyclin-dependent kinases (CDKs), motivating extensive research into CDK targeting small-molecule drugs as cancer therapeutics. Here we use combinatorial CRISPR/Cas9 perturbations to uncover an extensive network of functional interdependencies among CDKs and related factors, identifying 43 synthetic-lethal and 12 synergistic interactions. We dissect CDK perturbations using single-cell RNAseq, for which we develop a novel computational framework to precisely quantify cell-cycle effects and diverse cell states orchestrated by specific CDKs. While pairwise disruption of CDK4/6 is synthetic-lethal, only CDK6 is required for normal cell-cycle progression and transcriptional activation. Multiple CDKs (CDK1/7/9/12) are synthetic-lethal in combination with PRMT5, independent of cell-cycle control. In-depth analysis of mRNA expression and splicing patterns provides multiple lines of evidence that the CDK-PRMT5 dependency is due to aberrant transcriptional regulation resulting in premature termination. These inter-dependencies translate to drug-drug synergies, with therapeutic implications in cancer and other diseases.


Asunto(s)
Neoplasias , Humanos , Puntos de Control del Ciclo Celular , Ciclo Celular/genética , Neoplasias/tratamiento farmacológico , Proteína-Arginina N-Metiltransferasas/farmacología
12.
Mol Ther ; 31(6): 1533-1549, 2023 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-36620962

RESUMEN

RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.


Asunto(s)
COVID-19 , ARN , Humanos , ARN/metabolismo , Proteínas de Unión al ARN/genética , Edición de ARN/genética , Pandemias , COVID-19/genética , COVID-19/terapia , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo
13.
Nature ; 614(7946): 118-124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36697822

RESUMEN

Diabetes represents a spectrum of disease in which metabolic dysfunction damages multiple organ systems including liver, kidneys and peripheral nerves1,2. Although the onset and progression of these co-morbidities are linked with insulin resistance, hyperglycaemia and dyslipidaemia3-7, aberrant non-essential amino acid (NEAA) metabolism also contributes to the pathogenesis of diabetes8-10. Serine and glycine are closely related NEAAs whose levels are consistently reduced in patients with metabolic syndrome10-14, but the mechanistic drivers and downstream consequences of this metabotype remain unclear. Low systemic serine and glycine are also emerging as a hallmark of macular and peripheral nerve disorders, correlating with impaired visual acuity and peripheral neuropathy15,16. Here we demonstrate that aberrant serine homeostasis drives serine and glycine deficiencies in diabetic mice, which can be diagnosed with a serine tolerance test that quantifies serine uptake and disposal. Mimicking these metabolic alterations in young mice by dietary serine or glycine restriction together with high fat intake markedly accelerates the onset of small fibre neuropathy while reducing adiposity. Normalization of serine by dietary supplementation and mitigation of dyslipidaemia with myriocin both alleviate neuropathy in diabetic mice, linking serine-associated peripheral neuropathy to sphingolipid metabolism. These findings identify systemic serine deficiency and dyslipidaemia as novel risk factors for peripheral neuropathy that may be exploited therapeutically.


Asunto(s)
Diabetes Mellitus Experimental , Insulina , Metabolismo de los Lípidos , Enfermedades del Sistema Nervioso Periférico , Serina , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Glicina/metabolismo , Insulina/metabolismo , Enfermedades del Sistema Nervioso Periférico/metabolismo , Serina/metabolismo , Dieta Alta en Grasa , Adiposidad , Esfingolípidos/metabolismo , Neuropatía de Fibras Pequeñas , Dislipidemias
14.
J Biol Chem ; 299(2): 102866, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36596361

RESUMEN

G proteins and G protein-coupled receptors activate a diverse array of signal transduction pathways that promote cell growth and survival. Indeed, hot spot-activating mutations in GNAQ/GNA11, encoding Gαq proteins, are known to be driver oncogenes in uveal melanoma (UM), for which there are limited effective therapies currently available. Focal adhesion kinase (FAK) has been recently shown to be a central mediator of Gαq-driven signaling in UM, and as a result, is being explored clinically as a therapeutic target for UM, both alone and in combination therapies. Despite this, the repertoire of Gαq/FAK-regulated signaling mechanisms have not been fully elucidated. Here, we used a whole-genome CRISPR screen in GNAQ-mutant UM cells to identify mechanisms that, when overactivated, lead to reduced sensitivity to FAK inhibition. In this way, we found that the PI3K/AKT signaling pathway represented a major resistance driver. Our dissection of the underlying mechanisms revealed that Gαq promotes PI3K/AKT activation via a conserved signaling circuitry mediated by FAK. Further analysis demonstrated that FAK activates PI3K through the association and tyrosine phosphorylation of the p85 regulatory subunit of PI3K and that UM cells require PI3K/AKT signaling for survival. These findings establish a novel link between Gαq-driven signaling and the stimulation of PI3K as well as demonstrate aberrant activation of signaling networks underlying the growth and survival of UM and other Gαq-driven malignancies.


Asunto(s)
Carcinogénesis , Proteína-Tirosina Quinasas de Adhesión Focal , Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteína-Tirosina Quinasas de Adhesión Focal/genética , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Subunidades alfa de la Proteína de Unión al GTP/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/genética , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Humanos , Carcinogénesis/genética
15.
Annu Rev Genet ; 56: 441-465, 2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36055970

RESUMEN

Scalable sequence-function studies have enabled the systematic analysis and cataloging of hundreds of thousands of coding and noncoding genetic variants in the human genome. This has improved clinical variant interpretation and provided insights into the molecular, biophysical, and cellular effects of genetic variants at an astonishing scale and resolution across the spectrum of allele frequencies. In this review, we explore current applications and prospects for the field and outline the principles underlying scalable functional assay design, with a focus on the study of single-nucleotide coding and noncoding variants.


Asunto(s)
Variación Genética , Genoma Humano , Humanos , Genoma Humano/genética
17.
Methods ; 205: 158-166, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35779766

RESUMEN

Adenosine deaminases acting on RNA (ADARs) can be repurposed to achieve site-specific A-to-I RNA editing by recruiting them to a target of interest via an ADAR-recruiting guide RNA (adRNA). In this chapter, we present details towards experimental methods to enable this via two orthogonal strategies: one, via recruitment of endogenous ADARs (i.e. ADARs already natively expressed in cells); and two, via recruitment of exogenous ADARs (i.e. ADARs delivered into cells). Towards the former, we describe the use of circular adRNAs to recruit endogenous ADARs to a desired mRNA target. This results in robust, persistent and highly transcript specific editing both in vitro and in vivo. Towards the latter, we describe the use of a split-ADAR2 system, which allows for overexpression of ADAR2 variants that can be utilized to edit adenosines with high specificity, including at challenging to edit adenosines in non-preferred motifs such as those flanked by a 5' guanosine. We anticipate the described methods should facilitate RNA editing applications across research and biotechnology settings.


Asunto(s)
Edición de ARN , Proteínas de Unión al ARN , Adenosina/metabolismo , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Edición de ARN/genética , ARN Guía de Kinetoplastida/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
18.
Nat Biotechnol ; 40(6): 938-945, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35145312

RESUMEN

Recruiting endogenous adenosine deaminases using exogenous guide RNAs to edit cellular RNAs is a promising therapeutic strategy, but editing efficiency and durability remain low using current guide RNA designs. In this study, we engineered circular ADAR-recruiting guide RNAs (cadRNAs) to enable more efficient programmable adenosine-to-inosine RNA editing without requiring co-delivery of any exogenous proteins. Using these cadRNAs, we observed robust and durable RNA editing across multiple sites and cell lines, in both untranslated and coding regions of RNAs, and high transcriptome-wide specificity. Additionally, we increased transcript-level specificity for the target adenosine by incorporating interspersed loops in the antisense domains, reducing bystander editing. In vivo delivery of cadRNAs via adeno-associated viruses enabled 53% RNA editing of the mPCSK9 transcript in C57BL/6J mice livers and 12% UAG-to-UGG RNA correction of the amber nonsense mutation in the IDUA-W392X mouse model of mucopolysaccharidosis type I-Hurler syndrome. cadRNAs enable efficient programmable RNA editing in vivo with diverse protein modulation and gene therapeutic applications.


Asunto(s)
Edición de ARN , ARN Guía de Kinetoplastida , Adenosina/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , ARN/genética , ARN/metabolismo , Edición de ARN/genética , ARN Circular , ARN Guía de Kinetoplastida/genética , Proteínas de Unión al ARN/metabolismo
19.
Elife ; 112022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044296

RESUMEN

Adenosine deaminases acting on RNA (ADARs) can be repurposed to enable programmable RNA editing, however their exogenous delivery leads to transcriptome-wide off-targeting, and additionally, enzymatic activity on certain RNA motifs, especially those flanked by a 5' guanosine is very low thus limiting their utility as a transcriptome engineering toolset. Towards addressing these issues, we first performed a novel deep mutational scan of the ADAR2 deaminase domain, directly measuring the impact of every amino acid substitution across 261 residues, on RNA editing. This enabled us to create a domain-wide mutagenesis map while also revealing a novel hyperactive variant with improved enzymatic activity at 5'-GAN-3' motifs. As overexpression of ADAR enzymes, especially hyperactive variants, can lead to significant transcriptome-wide off-targeting, we next engineered a split-ADAR2 deaminase which resulted in >100-fold more specific RNA editing as compared to full-length deaminase overexpression. Taken together, we anticipate this systematic engineering of the ADAR2 deaminase domain will enable broader utility of the ADAR toolset for RNA biotechnology applications.


Asunto(s)
Adenosina Desaminasa/genética , Edición de ARN , Proteínas de Unión al ARN/genética , Transcriptoma , Adenosina Desaminasa/metabolismo , Humanos , Motivos de Nucleótidos , Dominios Proteicos , Ingeniería de Proteínas , Proteínas de Unión al ARN/metabolismo
20.
Biomaterials ; 280: 121276, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34890975

RESUMEN

Genetic screens are powerful tools for both resolving biological function and identifying potential therapeutic targets, but require physiologically accurate systems to glean biologically useful information. Here, we enable genetic screens in physiologically relevant ex vivo cancer tissue models by integrating CRISPR-Cas-based genome engineering and biofabrication technologies. We first present a novel method for generating perfusable tissue constructs, and validate its functionality by using it to generate three-dimensional perfusable dense cultures of cancer cell lines and sustain otherwise ex vivo unculturable patient-derived xenografts. Using this system we enable large-scale CRISPR screens in perfused tissue cultures, as well as emulate a novel point-of-care diagnostics scenario of a clinically actionable CRISPR knockout (CRISPRko) screen of genes with FDA-approved drug treatments in ex vivo PDX cell cultures. Our results reveal differences across in vitro and in vivo cancer model systems, and highlight the utility of programmable tissue engineered models for screening therapeutically relevant cancer vulnerabilities.


Asunto(s)
Neoplasias , Ingeniería de Tejidos , Sistemas CRISPR-Cas/genética , Detección Precoz del Cáncer , Genoma , Humanos , Neoplasias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...