Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Cell ; 37(3): 704-713, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38411836

RESUMEN

MYCN (master regulator of cell cycle entry and proliferative metabolism) gene amplification defines a molecular subgroup of spinal cord ependymomas that show high-grade morphology and aggressive behavior. Demonstration of MYCN amplification by DNA methylation or fluorescence-in situ hybridization (FISH) is required for diagnosis. We aimed to (i) assess prevalence and clinicopathological features of MYCN-amplified spinal ependymomas and (ii) evaluate utility of immunohistochemistry (IHC) for MYCN protein as a surrogate for molecular testing. A combined retrospective-prospective study spanning 8 years was designed during which all spinal cord ependymomas with adequate tissue were subjected to MYCN FISH and MYCN IHC. Among 77 spinal cord ependymomas included, MYCN amplification was identified in 4 samples from 3 patients (3/74, 4%) including two (1st and 2nd recurrences) from the same patient. All patients were adults (median age at diagnosis of 32 years) including two females and one male. The index tumors were located in thoracic (n = 2) and lumbar (n = 1) spinal cord. One of the female patients had neurofibromatosis type 2 (NF2). All four tumors showed anaplastic histology. Diffuse expression of MYCN protein was seen in all four MYCN-amplified samples but in none of the non-amplified cases, thus showing 100% concordance with FISH results. On follow-up, the NF2 patient developed widespread spinal dissemination while another developed recurrence proximal to the site of previous excision. To conclude, MYCN-amplified spinal ependymomas are rare tumors, accounting for ~ 4% of spinal cord ependymomas. Within the limitation of small sample size, MYCN IHC showed excellent concordance with MYCN gene amplification.


Asunto(s)
Ependimoma , Neoplasias de la Médula Espinal , Adulto , Humanos , Masculino , Femenino , Proteína Proto-Oncogénica N-Myc/genética , Estudios Retrospectivos , Inmunohistoquímica , Estudios Prospectivos , Ependimoma/diagnóstico , Ependimoma/genética , Ependimoma/patología , Neoplasias de la Médula Espinal/diagnóstico , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/patología , Biomarcadores
2.
J Endocrinol ; 257(1)2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655849

RESUMEN

Thyroid hormones (TH) are vital for brain functions, while TH deficiency, i.e. hypothyroidism, induces neurological impairment in children and adults. Cerebellar neuronal apoptosis and motor deficits are crucial events in hypothyroidism; however, the underlying mechanism is less-known. Using a methimazole-treated hypothyroidism rat model, we investigated cerebellar autophagy, growth factor, and apoptotic mechanisms that participate in motor functions. We first identified that methimazole up-regulated cerebellar autophagy, marked by enhanced LC3B-II, Beclin-1, ATG7, ATG5-12, p-AMPKα/AMPKα, and p62 degradation as well as reduced p-AKT/AKT, p-mTOR/mTOR, and p-ULK1/ULK1 in developing and young adult rats. We probed upstream effectors of this abnormal autophagy and detected a methimazole-induced reduction in cerebellar phospho-epidermal growth factor receptor (p-EGFR)/EGFR and heparin-binding EGF-like growth factor (HB-EGF). Here, while a thyroxine-induced TH replenishment alleviated autophagy process and restored HB-EGF/EGFR, HB-EGF treatment regulated AKT-mTOR and autophagy signaling in the cerebellum. Moreover, neurons of the rat cerebellum demonstrated this reduced HB-EGF-dependent increased autophagy in hypothyroidism. We further checked whether the above events were related to cerebellar neuronal apoptosis and motor functions. We detected that comparable to thyroxine, treatment with HB-EGF or autophagy inhibitor, 3-MA, reduced methimazole-induced decrease in Nissl staining and increase in c-Caspase-3 and TUNEL-+ve apoptotic count of cerebellar neurons. Additionally, 3-MA, HB-EGF, and thyroxine attenuated the methimazole-induced diminution in riding time on rota-rod and grip strength for the motor performance of rats. Overall, our study enlightens HB-EGF/EGFR-dependent autophagy mechanism as a key to cerebellar neuronal loss and functional impairments in developmental hypothyroidism, which may be inhibited by HB-EGF and 3-MA treatments, like thyroxine.


Asunto(s)
Hipotiroidismo , Proteínas Proto-Oncogénicas c-akt , Animales , Ratas , Autofagia , Cerebelo/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Factor de Crecimiento Similar a EGF de Unión a Heparina/metabolismo , Hipotiroidismo/inducido químicamente , Metimazol/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Tiroxina , Serina-Treonina Quinasas TOR/metabolismo
3.
Mol Neurobiol ; 58(3): 1196-1211, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33106949

RESUMEN

Thyroid hormone (TH) is essential for brain development, and hypothyroidism induces cognitive deficits in children and young adults. However, the participating mechanisms remain less explored. Here, we examined the molecular mechanism, hypothesizing the involvement of a deregulated autophagy and apoptosis pathway in hippocampal neurons that regulate cognitive functions. Therefore, we used a rat model of developmental hypothyroidism, generated through methimazole treatment from gestation until young adulthood. We detected that methimazole stimulated the autophagy mechanism, characterized by increased LC3B-II, Beclin-1, ATG7, and ATG5-12 conjugate and decreased p-mTOR/mTOR and p-ULK1/ULK1 autophagy regulators in the hippocampus of developing and young adult rats. This methimazole-induced hippocampal autophagy could be inhibited by thyroxine treatment. Subsequently, probing the upstream mediators of autophagy revealed an increased hippocampal neuroinflammation, marked by upregulated interleukin (IL)-1alpha and beta and activated microglial marker, Iba1, promoting neuronal IL-1 receptor-1 expression. Hence, IL-1R-antagonist (IL-1Ra), which reduced hippocampal neuronal IL-1R1, also inhibited the enhanced autophagy in hypothyroid rats. We then linked these events with hypothyroidism-induced apoptosis and loss of hippocampal neurons, where we observed that like thyroxine, IL-1Ra and autophagy inhibitor, 3-methyladenine, reduced the cleaved caspase-3 and TUNEL-stained apoptotic neurons and enhanced Nissl-stained neuronal count in methimazole-treated rats. We further related these molecular results with cognition through Y-maze and passive avoidance tests, demonstrating an IL-1Ra and 3-methyladenine-mediated improvement in learning-memory performances of the hypothyroid rats. Taken together, our study enlightens the critical role of neuroinflammation-dependent autophagy mechanism in TH-regulated hippocampal functions, disrupted in developmental hypothyroidism.


Asunto(s)
Apoptosis , Autofagia , Disfunción Cognitiva/etiología , Hipocampo/patología , Hipotiroidismo/complicaciones , Hipotiroidismo/patología , Interleucina-1/metabolismo , Neuronas/patología , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Disfunción Cognitiva/patología , Disfunción Cognitiva/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiopatología , Hipotiroidismo/sangre , Hipotiroidismo/fisiopatología , Inflamación/patología , Memoria/efectos de los fármacos , Metimazol/farmacología , Microglía/efectos de los fármacos , Microglía/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosforilación/efectos de los fármacos , Ratas Wistar , Serina-Treonina Quinasas TOR/metabolismo , Tiroxina/sangre , Triyodotironina/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...