Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Pathol Res Pract ; 251: 154895, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37879146

RESUMEN

PURPOSE: Oxidative stress and inflammation are key pathophysiological features of chronic respiratory diseases, including asthma and chronic obstructive pulmonary disease (COPD). Agarwood oil obtained from Aquilaria trees has promising antioxidant and anti-inflammatory activities. However, its clinical application is hampered by poor solubility. A viable approach to overcome this involves formulation of oily constituents into emulsions. Here, we have investigated the antioxidant and anti-inflammatory potential of an agarwood oil-based nanoemulsion (DE'RAAQSIN) against lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages in vitro. METHODS: The antioxidant and anti-inflammatory activity of DE'RAAQSIN was assessed by measuring the levels of ROS and nitric oxide (NO) produced, using the DCF-DA assay and the Griess reagent assay, respectively. The molecular pathways activated by DE'RAAQSIN were investigated via qPCR. RESULTS: LPS stimulation of RAW264.7 cells increased the production of nitric oxide (NO) and ROS and resulted in the overexpression of the inducible nitric oxide synthase (iNOS) gene. Furthermore, LPS induced the upregulation of the expression of key proinflammatory genes (IL-6, TNF-α, IL-1ß, and CXCL1) and of the antioxidant gene heme oxygenase-1 (HO-1). DE'RAAQSIN demonstrated potent antioxidant and anti-inflammatory activity by significantly reducing the levels of ROS and of secreted NO, simultaneously counteracting the LPS-induced overexpression of iNOS, IL-6, TNF-α, IL-1ß, and HO-1. These findings were corroborated by in silico activity prediction and physicochemical analysis of the main agarwood oil components. CONCLUSIONS: We propose DE'RAAQSIN as a promising alternative managing inflammatory disorders, opening the platform for further studies aimed at understanding the effectiveness of DE'RAAQSIN.


Asunto(s)
Lipopolisacáridos , Macrófagos , Ratones , Animales , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Antioxidantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/uso terapéutico , Interleucina-6/metabolismo , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Estrés Oxidativo , FN-kappa B/metabolismo
2.
Nutrients ; 15(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36839377

RESUMEN

Chronic obstructive pulmonary disease (COPD) is an irreversible inflammatory respiratory disease characterized by frequent exacerbations and symptoms such as cough and wheezing that lead to irreversible airway damage and hyperresponsiveness. The primary risk factor for COPD is chronic cigarette smoke exposure, which promotes oxidative stress and a general pro-inflammatory condition by stimulating pro-oxidant and pro-inflammatory pathways and, simultaneously, inactivating anti-inflammatory and antioxidant detoxification pathways. These events cause progressive damage resulting in impaired cell function and disease progression. Treatments available for COPD are generally aimed at reducing the symptoms of exacerbation. Failure to regulate oxidative stress and inflammation results in lung damage. In the quest for innovative treatment strategies, phytochemicals, and complex plant extracts such as agarwood essential oil are promising sources of molecules with antioxidant and anti-inflammatory activity. However, their clinical use is limited by issues such as low solubility and poor pharmacokinetic properties. These can be overcome by encapsulating the therapeutic molecules using advanced drug delivery systems such as polymeric nanosystems and nanoemulsions. In this study, agarwood oil nanoemulsion (agarwood-NE) was formulated and tested for its antioxidant and anti-inflammatory potential in cigarette smoke extract (CSE)-treated BCi-NS1.1 airway basal epithelial cells. The findings suggest successful counteractivity of agarwood-NE against CSE-mediated pro-inflammatory effects by reducing the expression of the pro-inflammatory cytokines IL-1α, IL-1ß, IL-8, and GDF-15. In addition, agarwood-NE induced the expression of the anti-inflammatory mediators IL-10, IL-18BP, TFF3, GH, VDBP, relaxin-2, IFN-γ, and PDGF. Furthermore, agarwood-NE also induced the expression of antioxidant genes such as GCLC and GSTP1, simultaneously activating the PI3K pro-survival signalling pathway. This study provides proof of the dual anti-inflammatory and antioxidant activity of agarwood-NE, highlighting its enormous potential for COPD treatment.


Asunto(s)
Fumar Cigarrillos , Enfermedad Pulmonar Obstructiva Crónica , Antioxidantes/farmacología , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Estrés Oxidativo , Inflamación/metabolismo , Antiinflamatorios/farmacología , Células Epiteliales , Nicotiana
3.
Molecules ; 27(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35566388

RESUMEN

The inflammatory response is a central aspect of the human immune system that acts as a defense mechanism to protect the body against infections and injuries. A dysregulated inflammatory response is a major health concern, as it can disrupt homeostasis and lead to a plethora of chronic inflammatory conditions. These chronic inflammatory diseases are one of the major causes of morbidity and mortality worldwide and the need for them to be managed in the long term has become a crucial task to alleviate symptoms and improve patients' overall quality of life. Although various synthetic anti-inflammatory agents have been developed to date, these medications are associated with several adverse effects that have led to poor therapeutic outcomes. The hunt for novel alternatives to modulate underlying chronic inflammatory processes has unveiled nature to be a plentiful source. One such example is agarwood, which is a valuable resinous wood from the trees of Aquilaria spp. Agarwood has been widely utilized for medicinal purposes since ancient times due to its ability to relieve pain, asthmatic symptoms, and arrest vomiting. In terms of inflammation, the major constituent of agarwood, agarwood oil, has been shown to possess multiple bioactive compounds that can regulate molecular mechanisms of chronic inflammation, thereby producing a multitude of pharmacological functions for treating various inflammatory disorders. As such, agarwood oil presents great potential to be developed as a novel anti-inflammatory therapeutic to overcome the drawbacks of existing therapies and improve treatment outcomes. In this review, we have summarized the current literature on agarwood and its bioactive components and have highlighted the potential roles of agarwood oil in treating various chronic inflammatory diseases.


Asunto(s)
Calidad de Vida , Thymelaeaceae , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...