Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Liq ; 367(Pt A)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37790165

RESUMEN

In all biologically relevant media, proteins interact in the presence of surrounding ions, and such interactions are water-mediated. Water molecules play a crucial role in the restructuring of proteins in solution and indeed in their biological activity. Surface water dynamics and proton exchange at protein surfaces is investigated here using NMR relaxometry, for two well-known globular proteins, lysozyme and bovine serum albumin, with particular attention to the role of surface ions. We present a unified model of surface water dynamics and proton exchange, accounting simultaneously for the observed longitudinal and transverse relaxation rates. The most notable effect of salt (0.1 M) concerns the slow surface water dynamics, related to rare water molecules embedded in energy wells on the protein surface. This response is protein-specific. On the other hand, the proton exchange time between labile protein-protons and water-protons at the protein surface seems to be very similar for the two proteins and is insensitive to the addition of salts at the concentration studied.

2.
J Phys Chem B ; 125(31): 8673-8681, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34342225

RESUMEN

Proteins function in crowded aqueous environments, interacting with a diverse range of compounds, and among them, dissolved ions. These interactions are water-mediated. In the present study, we combine field-dependent NMR relaxation (NMRD) and theory to probe water dynamics on the surface of proteins in concentrated aqueous solutions of hen egg-white lysozyme (LZM) and bovine serum albumin (BSA). The experiments reveal that the presence of salts (NaCl or NaI) leads to an opposite ion-specific response for the two proteins: an addition of salt to LZM solutions increases water relaxation rates with respect to the salt-free case, while for BSA solutions, a decrease is observed. The magnitude of the change depends on the ion identity. The developed model accounts for the non-Lorentzian shape of the NMRD profiles and reproduces the experimental data over four decades in Larmor frequency (10 kHz to 110 MHz). It is applicable up to high protein concentrations. The model incorporates the observed ion-specific effects via changes in the protein surface roughness, represented by the surface fractal dimension, and the accompanying changes in the surface water residence times. The response is protein-specific, linked to geometrical aspects of the individual protein surfaces, and goes beyond protein-independent Hofmeister-style ordering of ions.


Asunto(s)
Albúmina Sérica Bovina , Agua , Iones , Espectroscopía de Resonancia Magnética
3.
J Colloid Interface Sci ; 604: 358-367, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34273780

RESUMEN

We investigate the organisation of clay nanoplatelets within a hydrogel based on modified ionenes, cationic polyelectrolytes forming physically crosslinked hydrogels induced by hydrogen bonding and π-π stacking. Combination of small angle X-ray and neutron scattering (SAXS, SANS) reveals the structure of the polyelectrolyte network as well as the organisation of the clay additives. The clay-free hydrogel network features a characteristic mesh-size between 20 and 30 nm, depending on the polyelectrolyte concentration. Clay nanoplatelets inside the hydrogel organise in a regular face-to-face stacking manner, with a large repeat distance, following rather closely the hydrogel mesh-size. The presence of the nanoplatelets does not modify the hydrogel mesh size. Further, the clay-compensating counterions (Na+, Ca2+ or La3+) and the clay type (montmorillonite, beidellite) both have a significant influence on nanoplatelet organisation. The degree of nanoplatelet ordering in the hydrogel is very sensitive to the negative charge location on the clay platelet (different for each clay type). Increased nanoplatelet ordering leads to an improvement of the elastic properties of the hydrogel. On the contrary, the presence of dense clay aggregates (tactoids), induced by multi-valent clay counterions, destroys the hydrogel network as seen by the reduction of the elastic modulus of the hydrogel.


Asunto(s)
Hidrogeles , Arcilla , Polielectrolitos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
4.
Langmuir ; 35(33): 10937-10946, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31318560

RESUMEN

We study the aggregation of charged plate-like colloids, Na-montmorillonite clays, in the presence of ionenes, oppositely charged polymer chains. The choice of the charged polymer allows tuning its linear charge density to match/mismatch the average charge separation on the clay surfaces. We assess the nanoscale structure of the aggregates formed by small-angle X-ray and neutron scattering. The nanoscale features of the formed clay aggregates are dominated by the presence of a stacking peak, giving clear evidence for the formation of clay tactoids, that is, a face-to-face aggregation geometry of the clay platelets. The chain charge density of ionenes influences not only the stacking repeat distance within the clay tactoids but also the extent of stacking and abundance of the tactoids. We may distinguish two regimes as a function of clay and ionene polymer charge densities (ρc and ρp, respectively). The first regime applies to ρp > ρc and ρp ≈ ρc, that is, for highly and "matching" charged chains. Under these conditions, the intercalated chains lie in a flat conformation within the tactoids, irrespective of the ionic strength (within the range studied, i.e., up to 0.05 M NaBr). For weakly charged chains, ρp < ρc, undulation of the ionene chains within the tactoid is seen. The degree of undulation increases with ionic strength due to the decreasing persistence length of the ionene chains. The extent of stacking (5-10 platelets per tactoid) is a general feature of all the systems, and its origin remains unknown. The system corresponding to the closest match in charge separations on the clay surface and on the polymer chain (ρp ≈ ρc) features the highest abundance of tactoids. This coincides with the highest macroscopic density as deduced from simple visual inspection of sediment volumes. This leads to the open question regarding the link between the density at the nanoscale and the macroscopic density and sedimentation behavior of the aggregate.

5.
Phys Chem Chem Phys ; 20(48): 30340-30350, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30488933

RESUMEN

Ion-specific effects at the protein surface are investigated here in light of the changes they infer to surface water dynamics, as observed by 1H NMR relaxation (at 20 MHz). Two well-known proteins, hen egg-white lysozyme (LZM) and bovine serum albumin (BSA), show qualitatively opposite trends in the transverse relaxation rate, R2(1H), along a series of different monovalent salt anions in the solution. Presence of salt ions increases R2(1H) in the case of lysozyme and diminishes it in the case of BSA. The effect magnifies for larger and more polarizable ions. The same contrasting effect between the two proteins is observed for protein-solvent proton exchange. This hints at subtle effects ion-binding might have on the accessibility of water surface sites on the protein. We suggest that the combination of the density of surface charge residues and surface roughness, at the atomic scale, dictates the response to the presence of salt ions and is proper to each protein. Further, a dramatic increase in R2(1H) is found to correlate closely with the formation of protein aggregates. The same ordering of salts in their ability to aggregate lysozyme, as seen previously by cloud point measurements, is reproduced here by R2(1H). 1H NMR relaxation data is supplemented by 35Cl and 14N NMR relaxation for selected salt ions to probe the ion-binding itself.


Asunto(s)
Muramidasa/química , Albúmina Sérica Bovina/química , Soluciones/química , Agua/química , Animales , Aniones , Bovinos , Pollos , Difusión , Multimerización de Proteína , Espectroscopía de Protones por Resonancia Magnética , Protones
6.
Chemphyschem ; 18(19): 2756-2765, 2017 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-28661567

RESUMEN

Flocculation and its tuning are of utmost importance in the optimization of several industrial protocols in areas such as purification of waste water and civil engineering. Herein, we studied the polyelectrolyte-induced flocculation of clay colloids on a model system consisting of purified clay colloids of well-defined size fractions and ionene polyelectrolytes presenting regular and tunable chain charge density. To characterize ionene-induced clay flocculation, we turned to the combination of light absorbance (turbidity) and ζ-potential measurements, as well as adsorption isotherms. Our model system allowed us to identify the exact ratio of positive and negative charges in clay-ionene mixtures, the (c+/c-) ratio. For all samples studied, the onset of efficient flocculation occurred consistently at c+/c- ratios significantly below 1, which indicated the formation of highly ionene-deficient aggregates. At the same time, the ζ-potential measurements indicated an apparent zero charge on such aggregates. Thus, the ζ-potential values could not provide the stoichiometry inside the clay-ionene aggregates. The early onset of flocculation in clay-ionene mixtures is reminiscent of the behavior of multivalent salts and contrasts that of monovalent salts, for which a large excess amount of ions is necessary to achieve flocculation. Clear differences in the flocculation behavior are visible as a function of the ionene charge density, which governs the conformation of the ionene chains on the clay surface.

7.
Phys Chem Chem Phys ; 17(8): 5650-8, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25623061

RESUMEN

Aqueous solutions of polyelectrolytes are studied here by means of neutron scattering, with emphasis on backbone hydrophobicity and counter ion specific effects. Ionene polyelectrolytes with varying chain charge density and different counter ions are considered. Their neutron scattering data feature a number of aspects and trends that clearly deviate from the predictions of the existing theory. Ionenes challenge the current hydrophilic-hydrophobic classification of water-soluble polyelectrolytes. The hydrophobic character of their hydrocarbon backbone emerges only for very low chain charge densities (at 15% of charged monomers), which is significantly lower than for other polyelectrolytes with a more complex structure. Universality in the counter ion specific effect seen in ionene solutions with Br(-) or F(-) counterions is established. The polyelectrolyte peak in the scattering spectra of Br-ionenes disappears beyond a specific charge concentration, which is identical across all ionene chain charge densities. In addition, scattering spectra of Br-ionenes and F-ionenes feature contrasting temperature trends, which are accentuated with decreasing chain charge density. Our interpretation of the F-Br effect, based on the different hydration properties of the counter ions, is supported by additional NMR measurements on ionenes with mixed counter ion clouds. Overall, the study of ionene polyelectrolytes points clearly to the need for combining the scaling concepts with those of ion specificity, to obtain a theoretical framework encompassing the wealth of phenomena occurring in polyelectrolyte solutions.

8.
Phys Chem Chem Phys ; 16(26): 13447-57, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24887596

RESUMEN

Molecular simulations have allowed us to probe the atomic details of aqueous solutions of tetramethylammonium (TMA) and tetrabutylammonium (TBA) bromide, across a wide range of concentrations (0.5 to 3-4 molal). We highlight the space-filling (TMA(+)) versus penetrable (TBA(+)) nature of these polyatomic cations and its consequence for ion hydration, ion dynamics and ion-ion interactions. A well-established hydration is seen for both TMA(+) and TBA(+) throughout the concentration range studied. A clear penetration of water molecules, as well as counterions, between the hydrocarbon arms of TBA(+), which remain in an extended configuration, is seen. Global rotation of individual TBA(+) points towards isolated rather than aggregated ions (from dilute up to 1 m concentration). Only for highly concentrated solutions, in which inter-penetration of adjacent TBA(+)s cannot be avoided, does the rotational time increase dramatically. From both structural and dynamic data we conclude that there is absence of hydrophobicity-driven cation-cation aggregation in both TMABr and TBABr solutions studied. The link between these real systems and the theoretical predictions for spherical hydrophobic solutes of varying size does not seem straightforward.

9.
Phys Chem Chem Phys ; 14(37): 12898-904, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22899253

RESUMEN

Aqueous solutions of ionenes with bromide and fluoride counterions have been investigated using small angle neutron scattering for the first time. Ionenes are a class of cationic polyelectrolytes based on quaternary ammonium atoms and, considering the very low solubility of their uncharged part (hydrocarbon chain), would be formally classified as hydrophobic. Ionenes present important structural differences over previously studied polyelectrolytes: (a) charge is located on the polyelectrolyte backbone, (b) the distance between charges is regular and tunable by synthesis, (c) hydrophobicity comes from methylene groups of the backbone and not from bulky side groups. Results for Br ionenes feature a disappearance of the well-known polyelectrolyte peak beyond a given monomer concentration. Below this concentration, the position of the peak depends on the chain charge density, f(chem), and scales as f(chem)(0.30±0.04). This is an indication of a hydrophilic character of the ionene backbone. In addition, osmotic coefficients of ionene solutions resemble again other hydrophilic polyelectrolytes, featuring no unusual increase in the water activity (or a significant counterion condensation). We conclude that despite the hydrophobicity of the hydrocarbon chain separating charged centers on ionenes, these chains behave as hydrophilic. In contrast to Br ionenes, the polyelectrolyte peak remains at all concentrations studied for the single F ionene investigated. This strong counterion effect is rationalized in terms of the different hydrating properties and ion pairing in the case of bromide and fluoride ions.

10.
Environ Sci Technol ; 45(7): 2850-5, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21381672

RESUMEN

Within the wider context of water behavior in soils, and with a particular emphasis on clays surrounding underground radioactive waste packages, we present here the translational dynamics of water in clays in low hydrated states as studied by coupling molecular dynamics (MD) simulations and quasielastic neutron scattering experiments by neutron spin echo (NSE). A natural montmorillonite clay of interest is modeled by a synthetic clay which allows us to understand the determining parameters from MD simulations by comparison with the experimental values. We focus on temperatures between 300 and 350 K, i.e., the range relevant to the highlighted application. The activation energy Ea experimentally determined is 6.6 kJ/mol higher than that for bulk water. Simulations are in good agreement with experiments for the relevant set of conditions, and they give more insight into the origin of the observed dynamics.


Asunto(s)
Silicatos de Aluminio/química , Modelos Moleculares , Silicatos/química , Arcilla , Hidrodinámica , Espectrometría de Masas , Neutrones , Protección Radiológica/métodos , Suelo/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...