Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plants (Basel) ; 12(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37896011

RESUMEN

Patterns of species diversity have been associated with changes in climate across latitude and elevation. However, the ecological and evolutionary mechanisms underlying these relationships are still actively debated. Here, we present a complementary view of the well-known tropical niche conservatism (TNC) hypothesis, termed the multiple zones of origin (MZO) hypothesis, to explore mechanisms underlying latitudinal and elevational gradients of phylogenetic diversity in tree communities. The TNC hypothesis posits that most lineages originate in warmer, wetter, and less seasonal environments in the tropics and rarely colonize colder, drier, and more seasonal environments outside of the tropical lowlands, leading to higher phylogenetic diversity at lower latitudes and elevations. In contrast, the MZO hypothesis posits that lineages also originate in temperate environments and readily colonize similar environments in the tropical highlands, leading to lower phylogenetic diversity at lower latitudes and elevations. We tested these phylogenetic predictions using a combination of computer simulations and empirical analyses of tree communities in 245 forest plots located in six countries across the tropical and subtropical Andes. We estimated the phylogenetic diversity for each plot and regressed it against elevation and latitude. Our simulated and empirical results provide strong support for the MZO hypothesis. Phylogenetic diversity among co-occurring tree species increased with both latitude and elevation, suggesting an important influence on the historical dispersal of lineages with temperate origins into the tropical highlands. The mixing of different floras was likely favored by the formation of climatically suitable corridors for plant migration due to the Andean uplift. Accounting for the evolutionary history of plant communities helps to advance our knowledge of the drivers of tree community assembly along complex climatic gradients, and thus their likely responses to modern anthropogenic climate change.

2.
Front Microbiol ; 13: 918861, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865934

RESUMEN

Plastic production has been increasing exponentially in the last 60 years, but plastic disposal is out of control, resulting in the pollution of all ecosystems on Earth. Finding alternative environmentally sustainable choices, such as biodegradation by insects and their associated gut microbiota, is crucial, however we have only begun to characterize these ecosystems. Some bacteria and one fungus have been previously identified in the gut of Greater Wax Moth larvae (Galleria mellonella L., Lepidoptera, Pyralidae) located mainly in the Northern hemisphere. The aim of this study was to describe changes in the gut microbiota associated with the consumption of polyethylene and polystyrene by the Greater Wax Moth in Argentina, considering both bacteria and fungi. Larvae were fed polyethylene, polystyrene and beeswax as control for 7 days. Next generation sequencing revealed changes in the bacterial gut microbiome of the wax moth larvae at the phyla and genus levels, with an increase in two Pseudomonas strains. The fungal communities showed no differences in composition between diets, only changing in relative abundance. This is the first report of both bacterial and fungal communities associated with a plastivore insect. The results are promising and call for more studies concerning a potential multi-kingdom synergy in the plastic biodegradation process.

3.
Environ Sci Pollut Res Int ; 29(45): 68132-68142, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35532825

RESUMEN

Low-density polyethylene (LDPE), biaxially oriented polypropylene (BOPP), and expanded polystyrene (EXPS) are the most common plastics found in every home of the world, but only ~ 10% enter the recycling chains. Consequently, the study of plastic biodegradation by microorganisms and insects, such as the wax moths, has gained special interest. Galleria mellonella (L.) has been shown to consume single-layered polyethylene and polystyrene, though biological impacts of this consumption have been rarely reported. We evaluated the consumption of different plastics by G. mellonella larvae (L7, mean size: 25-30 mm) and its effect on larval duration, survival, and development. For this, we offered the larvae five diets: single-layered LDPE, EXPS, BOPP, triple-layered polyethylene (SB, for silo-bags), and a control with beeswax. We recorded the state and weight of the materials and the state of larvae until they reached the adult stage. Larvae consumed more PE (both LDPE and SB) and EXPS than BOPP; still, they were able to emerge as adults in all treatments. Larvae that consumed plastics turned into pupal stage faster than those that consumed beeswax, regardless of the type and amount of plastic consumed. This is the first report of wild G. mellonella larvae in Argentina consuming biaxially polypropylene and silo-bags.


Asunto(s)
Mariposas Nocturnas , Animales , Larva/metabolismo , Plásticos/metabolismo , Polietileno/metabolismo , Polipropilenos , Poliestirenos/metabolismo
6.
Nat Commun ; 12(1): 2138, 2021 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-33837222

RESUMEN

It is largely unknown how South America's Andean forests affect the global carbon cycle, and thus regulate climate change. Here, we measure aboveground carbon dynamics over the past two decades in 119 monitoring plots spanning a range of >3000 m elevation across the subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for aboveground carbon (0.67 ± 0.08 Mg C ha-1 y-1) and have a high potential to serve as future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic and biotic factors, such as climate and size-dependent mortality of trees. The increasing aboveground carbon stocks offset the estimated C emissions due to deforestation between 2003 and 2014, resulting in a net total uptake of 0.027 Pg C y-1. Reducing deforestation will increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow for recovery of biomass losses due to climate change.


Asunto(s)
Secuestro de Carbono/fisiología , Carbono/metabolismo , Cambio Climático , Conservación de los Recursos Naturales , Árboles/metabolismo , Biomasa , Bosques , América del Sur , Clima Tropical
7.
Bot Rev ; 86(2): 93-118, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32836310

RESUMEN

Ligustrum lucidum is a highly invasive East Asian tree that successfully colonizes several subtropical and temperate areas around the world. Its invasion capacity results from a widespread human use mostly in urban and periurban settings, very abundant fruit and seed production, small bird-dispersed fruits, high germination rates, resprouting capacity, fast growth rates, low herbivory levels and tolerance to a wide range of light, temperature and soil. All these traits contribute to its ability to rapidly increase in abundance, alter biodiversity, landscape ecology and limit its management. This paper reviews the current knowledge on L. lucidum with particular focus on its uses, distribution, invasiveness, ecological and economic impacts and control measures. Most relevant aspect of the review highlight the negative ecological impacts of L. lucidum, its potential to continue expanding its range of distribution and the need of further studies on the eco-physiology of the species, economic impact and social perception of its invasion and early warning systems.

8.
PLoS One ; 15(4): e0231553, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32311701

RESUMEN

Our knowledge about the structure and function of Andean forests at regional scales remains limited. Current initiatives to study forests over continental or global scales still have important geographical gaps, particularly in regions such as the tropical and subtropical Andes. In this study, we assessed patterns of structure and tree species diversity along ~ 4000 km of latitude and ~ 4000 m of elevation range in Andean forests. We used the Andean Forest Network (Red de Bosques Andinos, https://redbosques.condesan.org/) database which, at present, includes 491 forest plots (totaling 156.3 ha, ranging from 0.01 to 6 ha) representing a total of 86,964 identified tree stems ≥ 10 cm diameter at breast height belonging to 2341 identified species, 584 genera and 133 botanical families. Tree stem density and basal area increases with elevation while species richness decreases. Stem density and species richness both decrease with latitude. Subtropical forests have distinct tree species composition compared to those in the tropical region. In addition, floristic similarity of subtropical plots is between 13 to 16% while similarity between tropical forest plots is between 3% to 9%. Overall, plots ~ 0.5-ha or larger may be preferred for describing patterns at regional scales in order to avoid plot size effects. We highlight the need to promote collaboration and capacity building among researchers in the Andean region (i.e., South-South cooperation) in order to generate and synthesize information at regional scale.


Asunto(s)
Altitud , Biodiversidad , Bosques , Árboles , Clima , América del Sur
9.
Sci Total Environ ; 668: 1025-1029, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31018444

RESUMEN

The massive production of plastic started in mid 20th century. Today, only 60 years later and despite its obvious benefits, plastic pollution is ubiquitous, influencing all global environments and the planet's biota, including human-well-being. Plastic pollution may interact with other global change drivers, having large-scale, remote and long-lasting effects. Here we highlight that plastic pollution should be considered a main topic for global change research in the 21st century, especially among terrestrial ecologists at understudied continental regions such as South America.

11.
Nature ; 564(7735): 207-212, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30429613

RESUMEN

Global warming is forcing many species to shift their distributions upward, causing consequent changes in the compositions of species that occur at specific locations. This prediction remains largely untested for tropical trees. Here we show, using a database of nearly 200 Andean forest plot inventories spread across more than 33.5° latitude (from 26.8° S to 7.1° N) and 3,000-m elevation (from 360 to 3,360 m above sea level), that tropical and subtropical tree communities are experiencing directional shifts in composition towards having greater relative abundances of species from lower, warmer elevations. Although this phenomenon of 'thermophilization' is widespread throughout the Andes, the rates of compositional change are not uniform across elevations. The observed heterogeneity in thermophilization rates is probably because of different warming rates and/or the presence of specialized tree communities at ecotones (that is, at the transitions between distinct habitats, such as at the timberline or at the base of the cloud forest). Understanding the factors that determine the directions and rates of compositional changes will enable us to better predict, and potentially mitigate, the effects of climate change on tropical forests.


Asunto(s)
Aclimatación , Altitud , Biodiversidad , Bosques , Calentamiento Global , Temperatura , Árboles/clasificación , Árboles/fisiología , Bases de Datos Factuales , Planificación en Desastres/tendencias , Desastres/prevención & control , Predicción/métodos , Especificidad de la Especie , Clima Tropical
12.
Ecol Evol ; 8(23): 11554-11567, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30598756

RESUMEN

As global climate change leads to warmer and dryer conditions in the central Andes, alpine plant communities are forced to upward displacements following their climatic niche. Species range shifts are predicted to have major impacts on alpine communities by reshuffling species composition and abundances. Using a standardized protocol, we surveyed alpine plant communities in permanent plots on four high Andean summits in NW Argentina, which range from 4,040 to 4,740 m a.s.l. After a baseline survey in 2006-2008, we resurvey the same plots in 2012, and again in 2017. We found a significant decrease in plant cover, species richness, and diversity across the elevation gradient in the three censuses and a strong decrease in soil temperature along the elevation gradient. We found a high plant community turnover (37%-49%) among censuses, differentiating according to summits and aspects; major changes of community turnover were observed in the lowest summit (49%) and on the northern (47%) and western (46%) aspects. Temporal patterns in community changes were represented by increases in plant cover in the highest summit, in species richness in the lower summit, and in diversity (Shannon index) in the four summits, over time, together with increase in small herbs and non-tussock grasses. We suggest that the observed trend in plant community dynamics responds to short-term temperature and precipitation variability, which is influenced by El Niño Southern Oscillation (ENSO), and due to time lags in plant community response, it may take much longer than one decade for the observed trends to become stables and statistically significant. Our study provides an important foundation for documenting more profound changes in these subtropical alpine plant communities as global climate change continues.

13.
Rev. biol. trop ; 64(2): 747-762, abr.-jun. 2016. tab, ilus
Artículo en Español | LILACS | ID: biblio-843310

RESUMEN

ResumenLos macroinvertebrados son un componente vital en los ecosistemas acuáticos, procesan materia orgánica y sirven de alimento para otros organismos como los peces o anfibios. En los sistemas altoandinos, y más específicamente en las vegas o bofedales de Argentina, el conocimiento de la diversidad acuática es escaso o nulo, lo que ha dificultado la interpretación de patrones espaciales a escalas regionales. Típicamente estos ecosistemas se sitúan entre los 3 200 y 5 200 m.s.n.m. en zonas con precipitaciones por debajo de los 300 mm anuales. En este trabajo se realizó la primera descripción cuantitativa de los patrones espaciales de diversidad y composición de macroinvertebrados acuáticos en siete vegas de la Puna Argentina, y su relación con las características del ambiente, de la vegetación circundante y las características físico-químicas del agua. Se recolectaron 3 131 individuos de macroinvertebrados acuáticos, los cuales fueron identificados en 25 taxa que pertenecen a 22 familias y 24 géneros. Entre las plantas vasculares se registraron un total de 62 especies, correspondiente a 20 familias, las graminoides cespitosas fueron la forma de vida más abundante seguida por plantas en cojín o tapete. A partir de un análisis estadístico de ordenamiento NMDS (Non-Metrical Multidimensional Scaling) se segregaron los sitios de muestreo de cada vega. Las vegas ubicadas más al oeste y al sur y con mayor temperatura del agua se agruparon sobre el eje 1, mientras que las vegas con mayor conductividad, sólidos totales disueltos, y concentración de sales en el agua lo hicieron sobre el eje 2. La temperatura del agua fue siempre mayor que la del aire, y no mostró un patrón claro de disminución con la altitud. La altitud no se correlacionó con la abundancia de los macroinvertebrados ni con la riqueza de las plantas. Las formas de vida de plantas como gramíneas dispersas, hierbas rastreras y postradas (que en muchos casos ingresan al cauce de agua) y plantas acuáticas fueron más abundantes en las vegas 4, 5 y 7 y estuvieron asociadas con ciertos taxa de macroinvertebrados que pertenecen a distintos grupos funcionales tróficos como colectores- filtradores, colectores- recolectores y raspadores. Finalmente, las variables de conductividad, sólidos totales disueltos y concentración de sales fueron más elevadas en la vega 6, asociadas a Bivalvia (colector-filtrador) y Hyalella (colector-recolector). A partir de estos resultados se evidencia que los macroinvertebrados presentaron patrones espaciales de diversidad y composición, siendo en primer lugar más importante su relación con la vegetación circundante y en segundo término con las características físico-químicas del agua en siete vegas de la Puna argentina.


AbstractThe macroinvertebrates are a vital component of freshwater ecosystems as they contribute to the process of organic matter while serving as food for other organisms such as fish and amphibians. Unfortunately, the knowledge of the aquatic diversity is poor in the high Andean systems (between 3 200 and 5 200 m.a.s.l. and rainfall below 300 mm per year), especially in the Argentinean peatbogs, a fact which has made difficult the interpretation of spatial patterns on a regional scale. The present study aimed to describe the composition of aquatic macroinvertebrates in seven peatbogs in the Argentinean Puna, and to analyze for the first time their spatial patterns. For this, we studied the relationship of these organisms with the environment, and obtained information about the surrounding vegetation and water physico-chemical characteristics. A total of 3 131 specimens of aquatic macroinvertebrates were collected, representing 25 taxa belonging to 22 families and 24 genera. In addition, 62 species of vascular plants were recorded, belonging to 20 families. The most abundant life form were the tufted grasses, followed by cushions. By using an NMDS (Non-Metrical Multidimensional Scaling) statistical analysis, the sampling sites were ordered in each peatbog as follows. The peatbogs located furthest West and South with higher water temperature were grouped on axis 1, whereas those with higher conductivity, whole water dissolved solids and salt concentration were grouped on axis 2. The water temperature was higher than air temperature at all times, and we found no association between temperature and altitude. The altitude had no correlation with the abundance of macroinvertebrates or with plant richness. Life forms such as scattered graminoids, trailing and prostrate herbs (in many cases they get into the channel) and aquatic plants were more abundant in peatbogs 4, 5 and 7 and they had a correlation with some macroinvertebrates belonging to functional trophic groups such as filter-collectors, collectors and scrapers. Finally, conductivity, whole dissolved solids and salt concentration had their highest value in peatbog 6, where Bivalvia (filter-collector) and Hyalella (collector) were also found. The results obtained attest that these macroinvertebrates displayed diversity and composition spatial patterns, the most important feature being their relationship with the surrounding vegetation, and to a lesser extent, with the physical and chemical traits of water in seven fertile lowlands in the Argentinean Puna. Rev. Biol. Trop. 64 (2): 747-762. Epub 2016 June 01.


Asunto(s)
Animales , Biodiversidad , Invertebrados/clasificación , Argentina , Ríos/química , Análisis Espacial
14.
Rev Biol Trop ; 64(2): 747-62, 2016 Jun.
Artículo en Español | MEDLINE | ID: mdl-29451767

RESUMEN

Spatial patterns in communities of aquatic macroinvertebrates of Argentinean Puna. The macroinvertebrates are a vital component of freshwater ecosystems as they contribute to the process of organic matter while serving as food for other organisms such as fish and amphibians. Unfortunately, the knowledge of the aquatic diversity is poor in the high Andean systems (between 3 200 and 5 200 m.a.s.l. and rainfall below 300 mm per year), especially in the Argentinean peatbogs, a fact which has made difficult the interpretation of spatial patterns on a regional scale. The present study aimed to describe the composition of aquatic macroinvertebrates in seven peatbogs in the Argentinean Puna, and to analyze for the first time their spatial patterns. For this, we studied the relationship of these organisms with the environment, and obtained information about the surrounding vegetation and water physico-chemical characteristics. A total of 3 131 specimens of aquatic macroinvertebrates were collected, representing 25 taxa belonging to 22 families and 24 genera. In addition, 62 species of vascular plants were recorded, belonging to 20 families. The most abundant life form were the tufted grasses, followed by cushions. By using an NMDS (Non-Metrical Multidimensional Scaling) statistical analysis, the sampling sites were ordered in each peatbog as follows. The peatbogs located furthest West and South with higher water temperature were grouped on axis 1, whereas those with higher conductivity, whole water dissolved solids and salt concentration were grouped on axis 2. The water temperature was higher than air temperature at all times, and we found no association between temperature and altitude. The altitude had no correlation with the abundance of macroinvertebrates or with plant richness. Life forms such as scattered graminoids, trailing and prostrate herbs (in many cases they get into the channel) and aquatic plants were more abundant in peatbogs 4, 5 and 7 and they had a correlation with some macroinvertebrates belonging to functional trophic groups such as filter-collectors, collectors and scrapers. Finally, conductivity, whole dissolved solids and salt concentration had their highest value in peatbog 6, where Bivalvia (filter-collector) and Hyalella (collector) were also found. The results obtained attest that these macroinvertebrates displayed diversity and composition spatial patterns, the most important feature being their relationship with the surrounding vegetation, and to a lesser extent, with the physical and chemical traits of water in seven fertile lowlands in the Argentinean Puna.


Asunto(s)
Biodiversidad , Invertebrados/clasificación , Animales , Argentina , Ríos/química , Análisis Espacial
15.
PLoS One ; 10(5): e0126594, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25973977

RESUMEN

General patterns of forest dynamics and productivity in the Andes Mountains are poorly characterized. Here we present the first large-scale study of Andean forest dynamics using a set of 63 permanent forest plots assembled over the past two decades. In the North-Central Andes tree turnover (mortality and recruitment) and tree growth declined with increasing elevation and decreasing temperature. In addition, basal area increased in Lower Montane Moist Forests but did not change in Higher Montane Humid Forests. However, at higher elevations the lack of net basal area change and excess of mortality over recruitment suggests negative environmental impacts. In North-Western Argentina, forest dynamics appear to be influenced by land use history in addition to environmental variation. Taken together, our results indicate that combinations of abiotic and biotic factors that vary across elevation gradients are important determinants of tree turnover and productivity in the Andes. More extensive and longer-term monitoring and analyses of forest dynamics in permanent plots will be necessary to understand how demographic processes and woody biomass are responding to changing environmental conditions along elevation gradients through this century.


Asunto(s)
Bosques , Biodiversidad , Modelos Lineales , Análisis de Componente Principal , Árboles/crecimiento & desarrollo
16.
PLoS One ; 8(9): e73546, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24069204

RESUMEN

Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1) y(-1)) and basal area by 6% (0.13 m(2) ha(-1) y(-1)). Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis) into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species), rainfall or temperature increase (no increase in evergreen or deciduous species, respectively). However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.


Asunto(s)
Árboles , Lluvia , Temperatura , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...