Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Cell Signal ; 121: 111299, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39004324

RESUMEN

The lack of therapeutics along with complex pathophysiology made non-alcoholic fatty liver disease (NAFLD) a research hotspot. Studies showed that the deficiency of Vitamin D plays a vital role in NAFLD pathogenesis. While several research studies focused on vitamin D supplementation in NAFLD, there is still a need to understand the regulatory mechanism of direct vitamin D receptor activation in NAFLD. In the present study, we explored the role of direct Vitamin D receptor activation using paricalcitol in choline-deficient high-fat diet-induced NAFLD rat liver and its modulation on protein acetylation. Our results showed that paricalcitol administration significantly reduced the fat accumulation in HepG2 cells and the liver of NAFLD rats. Paricalcitol attenuated the elevated serum level of alanine transaminase, aspartate transaminase, insulin, low-density lipoprotein, triglyceride, and increased high-density lipoprotein in NAFLD rats. Paricalcitol significantly decreased the increased total protein acetylation by enhancing the SIRT1 and SIRT3 expression in NAFLD liver. Further, the study revealed that paricalcitol reduced the acetylation of NFκB and FOXO3a in NAFLD liver along with a decrease in the mRNA expression of IL1ß, NFκB, TNFα, and increased catalase and MnSOD. Moreover, total antioxidant activity, glutathione, and catalase were also elevated, whereas lipid peroxidation, myeloperoxidase, and reactive oxygen species levels were significantly decreased in the liver of NAFLD after paricalcitol administration. The study concludes that the downregulation of SIRT1 and SIRT3 in NAFLD liver was associated with an increased acetylated NFκB and FOXO3a. Paricalcitol effectively reversed hepatic inflammation and oxidative stress in NAFLD rats through transcriptional regulation of NFκB and FOXO3a, respectively, by inhibiting their acetylation.


Asunto(s)
Ergocalciferoles , Proteína Forkhead Box O3 , Hígado , FN-kappa B , Enfermedad del Hígado Graso no Alcohólico , Estrés Oxidativo , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , FN-kappa B/metabolismo , Acetilación/efectos de los fármacos , Ergocalciferoles/farmacología , Ergocalciferoles/uso terapéutico , Humanos , Masculino , Ratas , Hígado/metabolismo , Hígado/efectos de los fármacos , Células Hep G2 , Inflamación/metabolismo , Sirtuina 1/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratas Sprague-Dawley , Sirtuinas
3.
Mol Biol Rep ; 51(1): 661, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758505

RESUMEN

SCN5A mutations have been reported to cause various cardiomyopathies in humans. Most of the SCN5A mutations causes loss of function and thereby, alters the overall cellular function. Therefore, to understand the loss of SCN5A function in cardiomyocytes, we have knocked down the SCN5A gene (SCN5A-KD) in H9c2 cells and explored the cell phenotype and molecular behaviors in the presence and absence of isoproterenol (ISO), an adrenergic receptor agonist that induces cardiac hypertrophy. Expression of several genes related to hypertrophy, inflammation, fibrosis, and energy metabolism pathways were evaluated. It was found that the mRNA expression of hypertrophy-related gene, brain (B-type) natriuretic peptide (BNP) was significantly increased in SCN5A-KD cells as compared to 'control' H9c2 cells. There was a further increase in the mRNA expressions of BNP and ßMHC in SCN5A-KD cells after ISO treatment compared to their respective controls. Pro-inflammatory cytokine, tumor necrosis factor-alpha expression was significantly increased in 'SCN5A-KD' H9c2 cells. Further, metabolism-related genes like glucose transporter type 4, cluster of differentiation 36, peroxisome proliferator-activated receptor alpha, and peroxisome proliferator-activated receptor-gamma were significantly elevated in the SCN5A-KD cells as compared to the control cells. Upregulation of these metabolic genes is associated with increased ATP production. The study revealed that SCN5A knock-down causes alteration of gene expression related to cardiac hypertrophy, inflammation, and energy metabolism pathways, which may promote cardiac remodelling and cardiomyopathy.


Asunto(s)
Cardiomegalia , Isoproterenol , Canal de Sodio Activado por Voltaje NAV1.5 , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Cardiomegalia/genética , Cardiomegalia/metabolismo , Ratas , Línea Celular , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Humanos , Mioblastos Cardíacos/metabolismo , Metabolismo Energético/genética , Regulación de la Expresión Génica/genética
4.
Free Radic Biol Med ; 218: 94-104, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582228

RESUMEN

Lamin A/C, essential inner nuclear membrane proteins, have been linked to progeria, a disease of accelerated aging, and many other diseases, which include cardiac disorder. Lamin A/C mutation and its phosphorylation are associated with altering nuclear shape and size. The role of lamin A/C in regulating normal cardiac function was reported earlier. In the present study, we hypothesized that Doxorubicin (Dox) may alter total lamin A/C expression and phosphorylation, thereby taking part in cardiac injury. An in vitro cellular injury model was generated with Dox (0.1-10.0 µM) treatment on cardiomyoblast cells (H9c2) to prove our hypothesis. Increased size and irregular (ameboid) nucleus shape were observed in H9c2 cells after Dox treatment. Similarly, we have observed a significant increase in cell death on increasing the Dox concentration. The expression of lamin A/C and its phosphorylation at serine 22 significantly decreased and increased, respectively in H9c2 cells and rat hearts after Dox exposure. Phosphorylation led to depolymerization of the lamin A/C in the inner nuclear membrane and was evidenced by their presence throughout the nucleoplasm as observed by immunocytochemistry techniques. Thinning and perforation on the walls of the nuclear membrane were observed in Dox-treated H9c2 cells. LMNA-overexpression in H9c2 protected the cells from Dox-induced cell death, reversing all changes described above. Further, improvement of lamin A/C levels was observed in Dox-treated H9c2 cells when treated with Purvalanol A, a CDK1 inhibitor and N-acetylcysteine, an antioxidant. The study provides new insight regarding Dox-induced cardiac injury with the involvement of lamin A/C and alteration of inner nuclear membrane structure.


Asunto(s)
Cardiotoxicidad , Doxorrubicina , Lamina Tipo A , Membrana Nuclear , Doxorrubicina/toxicidad , Lamina Tipo A/metabolismo , Lamina Tipo A/genética , Animales , Fosforilación/efectos de los fármacos , Membrana Nuclear/metabolismo , Membrana Nuclear/efectos de los fármacos , Ratas , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Cardiotoxicidad/etiología , Línea Celular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Antibióticos Antineoplásicos/toxicidad , Masculino , Ratas Sprague-Dawley
5.
Prostaglandins Other Lipid Mediat ; 169: 106766, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37479133

RESUMEN

Platelets are one of the key mediators in thrombosis as well as in the progression of many diseases. An increase in platelet activation and a decrease in platelet count is associated with a plethora of liver diseases. In non-alcoholic fatty liver disease (NAFLD), platelets are highly activated and participate in the disease progression by enhancing the pro-thrombotic and pro-inflammatory state. Some altered platelet parameters such as mean platelet volume, plateletcrits, and platelet distribution width, aspartate transaminase to platelet ratio index, liver stiffness to platelet ratio and red cell distribution width to platelet ratio were found to be associated with NAFLD disease. Further, platelet contributes to the progression of cardiovascular complications in NAFLD is gaining the researcher's attention. An elevated mean platelet volume is known to enhance the risk of stroke, atherosclerosis, thrombosis, and myocardial infarction in NAFLD. Evidence also suggested that modulation in platelet function using aspirin, ticlopidine, and cilostazol help in controlling the NAFLD progression. Future research should focus on antiplatelet therapy as a treatment strategy that can control platelet activation in NAFLD as well as its cardiovascular risk. In the present review, we have detailed the role of platelets in NAFLD and its cardiovascular complications. We further aimed to highlight the growing need for antiplatelet therapy in NAFLD.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Trombosis , Humanos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Inhibidores de Agregación Plaquetaria/uso terapéutico , Plaquetas , Activación Plaquetaria , Hígado
6.
J Diabetes Res ; 2021: 6404438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127948

RESUMEN

BACKGROUND: Diabetes mellitus (DM) is a chronic metabolic disorder associated with higher risk of having cardiovascular disease. Platelets play a promising role in the pathogenesis of cardiovascular complications in diabetes. Since last several decades, garlic and its bioactive components are extensively studied in diabetes and its complications. Our aim was to explore the antiplatelet property of allyl methyl sulfide (AMS) focusing on ameliorating platelet activation in diabetes. METHOD: We used streptozotocin- (STZ-) induced diabetic rats as model for type 1 diabetes. We have evaluated the effect of allyl methyl sulfide on platelet activation by administrating AMS to diabetic rats for 10 weeks. Flow cytometry-based analysis was used to evaluate the platelet activation, platelet aggregation, platelet macrophage interaction, and endogenous ROS generation in the platelets obtained from control, diabetes, and AMS- and aspirin-treated diabetic rats. RESULTS: AMS treatment for 10 weeks effectively reduced the blood glucose levels in diabetic rats. Three weeks of AMS (50 mg/kg/day) treatment did not reduce the activation of platelets but a significant (p < 0.05) decrease was observed after 10 weeks of treatment. Oral administration of AMS significantly (p < 0.05) reduced the baseline and also reduced ADP-induced aggregation of platelets after 3 and 10 weeks of treatment. Furthermore, 10 weeks of AMS treatment in diabetic rats attenuated the endogenous ROS content (p < 0.05) of platelets and platelet macrophage interactions. The inhibition of platelet activation in diabetic rats after AMS treatment was comparable with aspirin treatment (30 mg/kg/day). CONCLUSION: We observed an inhibitory effect of allyl methyl sulfide on platelet aggregation, platelet activation, platelet macrophage interaction, and increased ROS levels in type 1 diabetes. Our data suggests that AMS can be useful to control cardiovascular complication in diabetes via inhibition of platelet activation.


Asunto(s)
Compuestos Alílicos/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Activación Plaquetaria/efectos de los fármacos , Sulfuros/farmacología , Compuestos Alílicos/metabolismo , Compuestos Alílicos/uso terapéutico , Análisis de Varianza , Animales , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 1/fisiopatología , Modelos Animales de Enfermedad , Citometría de Flujo/métodos , Citometría de Flujo/estadística & datos numéricos , Ajo/metabolismo , Activación Plaquetaria/fisiología , Ratas , Sulfuros/metabolismo , Sulfuros/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA