Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Circ Res ; 134(11): 1515-1545, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781301

RESUMEN

People living with HIV have a 1.5- to 2-fold increased risk of developing cardiovascular disease. Despite treatment with highly effective antiretroviral therapy, people living with HIV have chronic inflammation that makes them susceptible to multiple comorbidities. Several factors, including the HIV reservoir, coinfections, clonal hematopoiesis of indeterminate potential (CHIP), microbial translocation, and antiretroviral therapy, may contribute to the chronic state of inflammation. Within the innate immune system, macrophages harbor latent HIV and are among the prominent immune cells present in atheroma during the progression of atherosclerosis. They secrete inflammatory cytokines such as IL (interleukin)-6 and tumor necrosis-α that stimulate the expression of adhesion molecules on the endothelium. This leads to the recruitment of other immune cells, including cluster of differentiation (CD)8+ and CD4+ T cells, also present in early and late atheroma. As such, cells of the innate and adaptive immune systems contribute to both systemic inflammation and vascular inflammation. On a molecular level, HIV-1 primes the NLRP3 (NLR family pyrin domain containing 3) inflammasome, leading to an increased expression of IL-1ß, which is important for cardiovascular outcomes. Moreover, activation of TLRs (toll-like receptors) by HIV, gut microbes, and substance abuse further activates the NLRP3 inflammasome pathway. Finally, HIV proteins such as Nef (negative regulatory factor) can inhibit cholesterol efflux in monocytes and macrophages through direct action on the cholesterol transporter ABCA1 (ATP-binding cassette transporter A1), which promotes the formation of foam cells and the progression of atherosclerotic plaque. Here, we summarize the stages of atherosclerosis in the context of HIV, highlighting the effects of HIV, coinfections, and antiretroviral therapy on cells of the innate and adaptive immune system and describe current and future interventions to reduce residual inflammation and improve cardiovascular outcomes among people living with HIV.


Asunto(s)
Aterosclerosis , Infecciones por VIH , Inflamación , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Aterosclerosis/inmunología , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Inflamación/inmunología , Animales , Inmunidad Innata
2.
bioRxiv ; 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38559150

RESUMEN

Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.

3.
Laryngoscope ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38450771

RESUMEN

OBJECTIVES: Recent immunologic study of the adaptive immune repertoire in the subglottic airway demonstrated high-frequency T cell clones that do not overlap between individuals. However, the anatomic distribution and antigenic target of the T cell repertoire in the proximal airway mucosa remain unresolved. METHODS: Single-cell RNA sequencing of matched scar and unaffected mucosa from idiopathic subglottic stenosis patients (iSGS, n = 32) was performed and compared with airway mucosa from healthy controls (n = 10). T cell receptor (TCR) sequences were interrogated via similarity network analysis to explore antigenic targets using the published algorithm: Grouping of Lymphocyte Interactions by Paratope Hotspots (GLIPH2). RESULTS: The mucosal T cell repertoire in healthy control airways consisted of highly expressed T cell clones conserved across anatomic subsites (trachea, bronchi, bronchioles, and lung). In iSGS, high-frequency clones were equally represented in both scar and adjacent non-scar tissue. Significant differences in repertoire structure between iSGS scar and unaffected mucosa was observed, driven by unique low-frequency clones. GLIPH2 results suggest low-frequency clones share targets between multiple iSGS patients. CONCLUSION: Healthy airway mucosa has a highly conserved T cell repertoire across multiple anatomic subsites. Similarly, iSGS patients have highly expressed T cell clones present in both scar and unaffected mucosa. iSGS airway scar possesses an abundance of less highly expanded clones with predicted antigen targets shared between patients. Interrogation of these shared motifs suggests abundant adaptive immunity to viral targets in iSGS airway scar. These results provide insight into disease pathogenesis and illuminate new treatment strategies in iSGS. LEVEL OF EVIDENCE: Level NA Laryngoscope, 2024.

4.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405939

RESUMEN

Parkinson's disease (PD) is associated with autoimmune T cells that recognize the protein alpha-synuclein in a subset of individuals. Multiple neuroantigens are targets of autoinflammatory T cells in classical central nervous system autoimmune diseases such as multiple sclerosis (MS). Here, we explored whether additional autoantigenic targets of T cells in PD. We generated 15-mer peptide pools spanning several PD-related proteins implicated in PD pathology, including GBA, SOD1, PINK1, parkin, OGDH, and LRRK2. Cytokine production (IFNγ, IL-5, IL-10) against these proteins was measured using a fluorospot assay and PBMCs from patients with PD and age-matched healthy controls. This approach identified unique epitopes and their HLA restriction from the mitochondrial-associated protein PINK1, a regulator of mitochondrial stability, as an autoantigen targeted by T cells. The T cell reactivity was predominantly found in male patients with PD, which may contribute to the heterogeneity of PD. Identifying and characterizing PINK1 and other autoinflammatory targets may lead to antigen-specific diagnostics, progression markers, and/or novel therapeutic strategies for PD.

5.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405793

RESUMEN

Stevens-Johnson syndrome and toxic epidermal necrolysis (SJS/TEN) is a rare but life-threatening cutaneous drug reaction mediated by human leukocyte antigen (HLA) class I-restricted CD8+ T-cells. To obtain an unbiased assessment of SJS/TEN cellular immunopathogenesis, we performed single-cell (sc) transcriptome, surface proteome, and TCR sequencing on unaffected skin, affected skin, and blister fluid from 17 SJS/TEN patients. From 119,784 total cells, we identified 16 scRNA-defined subsets, confirmed by subset-defining surface protein expression. Keratinocytes upregulated HLA and IFN-response genes in the affected skin. Cytotoxic CD8+ T-cell subpopulations of expanded and unexpanded TCRαß clonotypes were shared in affected skin and blister fluid but absent or unexpanded in SJS/TEN unaffected skin. SJS/TEN blister fluid is a rich reservoir of oligoclonal CD8+ T-cells with an effector phenotype driving SJS/TEN pathogenesis. This multiomic database will act as the basis to define antigen-reactivity, HLA restriction, and signatures of drug-antigen-reactive T-cell clonotypes at a tissue level.

6.
Eur J Immunol ; 54(1): e2350590, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37944995

RESUMEN

Standard single-cell RNA-sequencing alignment pipelines exhibit a propensity for misassigning killer immunoglobulin-like receptor (KIR) transcripts, thereby giving rise to inaccuracies in quantifying KIR expression. Alves et al. elucidated that these default workflows frequently misclassify activating KIR transcripts as inhibitory KIR expression, resulting in a skewed representation of the KIR repertoire.


Asunto(s)
Células Asesinas Naturales , Análisis de Expresión Génica de una Sola Célula , Células Asesinas Naturales/metabolismo , Receptores KIR/genética , Receptores KIR/metabolismo , Expresión Génica , Genotipo
7.
Laryngoscope ; 134(4): 1757-1764, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37787469

RESUMEN

OBJECTIVES: Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Given the observed immune cell infiltrate in SGS, we sought to test the hypothesis that SGS cases possessed a low diversity (highly clonal) adaptive immune response when compared with healthy controls. METHODS: Single cell RNA sequencing (scRNA-seq) of subglottic mucosal scar in iSGS (n = 24), iLTS (n = 8), and healthy controls (n = 7) was performed. T cell receptor (TCR) sequences were extracted, analyzed, and used to construct repertoire structure, compare diversity, interrogate overlap, and define antigenic targets using the Immunarch bioinformatics pipeline. RESULTS: The proximal airway mucosa in health and disease are equally diverse via Hill framework quantitation (iSGS vs. iLTS vs. Control, p > 0.05). Repertoires do not significantly overlap between individuals (Morisita <0.02). Among iSGS patients, clonality of the TCR repertoire is driven by CD8+ T cells, and iSGS patients possess numerous TCRs targeting viral and intercellular pathogens. High frequency clonotypes do not map to known targets in public datasets. CONCLUSION: SGS cases do not possess a lower diversity adaptive immune infiltrate when compared with healthy controls. Interestingly, the TCR repertoire in both health and disease contains a restricted number of high frequency clonotypes that do not significantly overlap between individuals. The target of the high frequency clonotypes in health and disease remain unresolved. LEVEL OF EVIDENCE: NA Laryngoscope, 134:1757-1764, 2024.


Asunto(s)
Laringoestenosis , Receptores de Antígenos de Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T/genética , Linfocitos T CD8-positivos
8.
Front Med (Lausanne) ; 10: 1213889, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37901413

RESUMEN

Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15-20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1-5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28-29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper.

10.
Front Immunol ; 14: 1152003, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711619

RESUMEN

Introduction: Subcutaneous adipose tissue (SAT) is a critical regulator of systemic metabolic homeostasis. Persons with HIV (PWH) have an increased risk of metabolic diseases and significant alterations in the SAT immune environment compared with the general population. Methods: We generated a comprehensive single-cell multi-omic SAT atlas to characterize cellular compositional and transcriptional changes in 59 PWH across a spectrum of metabolic health. Results: Glucose intolerance was associated with increased lipid-associated macrophages, CD4+ and CD8+ T effector memory cells, and decreased perivascular macrophages. We observed a coordinated intercellular regulatory program which enriched for genes related to inflammation and lipid-processing across multiple cell types as glucose intolerance increased. Increased CD4+ effector memory tissue-resident cells most strongly associated with altered expression of adipocyte genes critical for lipid metabolism and cellular regulation. Intercellular communication analysis demonstrated enhanced pro-inflammatory and pro-fibrotic signaling between immune cells and stromal cells in PWH with glucose intolerance compared with non-diabetic PWH. Lastly, while cell type-specific gene expression among PWH with diabetes was globally similar to HIV-negative individuals with diabetes, we observed substantially divergent intercellular communication pathways. Discussion: These findings suggest a central role of tissue-resident immune cells in regulating SAT inflammation among PWH with metabolic disease, and underscore unique mechanisms that may converge to promote metabolic disease.


Asunto(s)
Intolerancia a la Glucosa , Infecciones por VIH , Humanos , Intolerancia a la Glucosa/genética , Grasa Subcutánea , Inflamación , Lípidos
11.
J Acquir Immune Defic Syndr ; 94(2S): S42-S46, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707847

RESUMEN

BACKGROUND: The Southern region of the United States has the highest HIV incidence, and new infections disproportionately affect Black Americans. The Tennessee Center for AIDS Research (CFAR) Diversity, Equity, and Inclusion Pathway Initiative (CDEIPI) program supports the training of individuals from groups underrepresented in medicine and science in multiple areas of research to increase the pool of HIV-focused investigators at early educational and career stages. SETTING: The Tennessee CFAR is a partnership between Vanderbilt University Medical Center, Meharry Medical College (one of the oldest historically Black medical colleges), Tennessee Department of Health, and Nashville Community AIDS Resources, Education and Services (a sophisticated community service organization, which emphasizes research training responsive to regional and national priorities). METHODS: The Tennessee CFAR CDEIPI program leverages existing Vanderbilt University Medical Center and Meharry Medical College structured biomedical training programs for high school and undergraduate students to provide an intensive, mentored, HIV research experience augmented by CFAR resources situating this training within the broader history, scientific breadth, and societal and political aspects of the HIV epidemic. RESULTS: The first year of the Tennessee CFAR CDEIPI program trained 3 high school and 3 undergraduate students from underrepresented in medicine and science backgrounds in basic, clinical/translational, and community-focused research projects with a diverse group of 9 mentors. All students completed the program, and evaluations yielded positive feedback regarding mentoring quality and effectiveness, and continued interest in HIV-related research. CONCLUSIONS: The Tennessee CFAR CDEIPI program will continue to build upon experience from the first year to further contribute to national efforts to increase diversity in HIV-related research.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , Humanos , Tennessee/epidemiología , Infecciones por VIH/epidemiología , Infecciones por VIH/prevención & control , Instituciones Académicas , Estudiantes
12.
Nature ; 620(7976): 1025-1030, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37532928

RESUMEN

HIV-1 remains a global health crisis1, highlighting the need to identify new targets for therapies. Here, given the disproportionate HIV-1 burden and marked human genome diversity in Africa2, we assessed the genetic determinants of control of set-point viral load in 3,879 people of African ancestries living with HIV-1 participating in the international collaboration for the genomics of HIV3. We identify a previously undescribed association signal on chromosome 1 where the peak variant associates with an approximately 0.3 log10-transformed copies per ml lower set-point viral load per minor allele copy and is specific to populations of African descent. The top associated variant is intergenic and lies between a long intergenic non-coding RNA (LINC00624) and the coding gene CHD1L, which encodes a helicase that is involved in DNA repair4. Infection assays in iPS cell-derived macrophages and other immortalized cell lines showed increased HIV-1 replication in CHD1L-knockdown and CHD1L-knockout cells. We provide evidence from population genetic studies that Africa-specific genetic variation near CHD1L associates with HIV replication in vivo. Although experimental studies suggest that CHD1L is able to limit HIV infection in some cell types in vitro, further investigation is required to understand the mechanisms underlying our observations, including any potential indirect effects of CHD1L on HIV spread in vivo that our cell-based assays cannot recapitulate.


Asunto(s)
ADN Helicasas , Proteínas de Unión al ADN , Variación Genética , Infecciones por VIH , VIH-1 , Carga Viral , Humanos , Línea Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Infecciones por VIH/genética , VIH-1/crecimiento & desarrollo , VIH-1/fisiología , Carga Viral/genética , África , Cromosomas Humanos Par 1/genética , Alelos , ARN Largo no Codificante/genética , Replicación Viral
13.
Res Sq ; 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37292825

RESUMEN

Background: Idiopathic subglottic stenosis (iSGS) is a rare fibrotic disease of the proximal airway affecting adult Caucasian women nearly exclusively. Life-threatening ventilatory obstruction occurs secondary to pernicious subglottic mucosal scar. Disease rarity and wide geographic patient distribution has previously limited substantive mechanistic investigation into iSGS pathogenesis. Result: By harnessing pathogenic mucosa from an international iSGS patient cohort and single-cell RNA sequencing, we unbiasedly characterize the cell subsets in the proximal airway scar and detail their molecular phenotypes. Results show that the airway epithelium in iSGS patients is depleted of basal progenitor cells, and the residual epithelial cells acquire a mesenchymal phenotype. Observed displacement of bacteria beneath the lamina propria provides functional support for the molecular evidence of epithelial dysfunction. Matched tissue microbiomes support displacement of the native microbiome into the lamina propria of iSGS patients rather than disrupted bacterial community structure. However, animal models confirm that bacteria are necessary for pathologic proximal airway fibrosis and suggest an equally essential role for host adaptive immunity. Human samples from iSGS airway scar demonstrate adaptive immune activation in response to the proximal airway microbiome of both matched iSGS patients and healthy controls. Clinical outcome data from iSGS patients suggests surgical extirpation of airway scar and reconstitution with unaffected tracheal mucosa halts the progressive fibrosis. Conclusion: Our data support an iSGS disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. These results refine our understanding of iSGS and implicate shared pathogenic mechanisms with distal airway fibrotic diseases.

14.
Cell Rep Med ; 4(6): 101088, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37295422

RESUMEN

The coronavirus (CoV) family includes several viruses infecting humans, highlighting the importance of exploring pan-CoV vaccine strategies to provide broad adaptive immune protection. We analyze T cell reactivity against representative Alpha (NL63) and Beta (OC43) common cold CoVs (CCCs) in pre-pandemic samples. S, N, M, and nsp3 antigens are immunodominant, as shown for severe acute respiratory syndrome 2 (SARS2), while nsp2 and nsp12 are Alpha or Beta specific. We further identify 78 OC43- and 87 NL63-specific epitopes, and, for a subset of those, we assess the T cell capability to cross-recognize sequences from representative viruses belonging to AlphaCoV, sarbecoCoV, and Beta-non-sarbecoCoV groups. We find T cell cross-reactivity within the Alpha and Beta groups, in 89% of the instances associated with sequence conservation >67%. However, despite conservation, limited cross-reactivity is observed for sarbecoCoV, indicating that previous CoV exposure is a contributing factor in determining cross-reactivity. Overall, these results provide critical insights in developing future pan-CoV vaccines.


Asunto(s)
COVID-19 , Resfriado Común , Humanos , Linfocitos T , SARS-CoV-2 , Reacciones Cruzadas
15.
bioRxiv ; 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37162990

RESUMEN

Persistent systemic inflammation in persons with HIV (PWH) is accompanied by an increased risk of metabolic disease. Yet, changes in the innate and adaptive immune system in PWH who develop metabolic disease remain poorly defined. Using unbiased approaches, we show that PWH with prediabetes/diabetes have a significantly higher proportion of circulating CD14 + monocytes complexed to T cells. The complexed CD3 + T cells and CD14 + monocytes demonstrate functional immune synapses, increased expression of proinflammatory cytokines, and greater glucose utilization. Furthermore, these complexes harbor more latent HIV DNA compared to CD14 + monocytes or CD4 + T cells. Our results demonstrate that circulating CD3 + CD14 + T cell-monocyte pairs represent functional dynamic cellular interactions that likely contribute to inflammation and, in light of their increased proportion, may have a role in metabolic disease pathogenesis. These findings provide an incentive for future studies to investigate T cell-monocyte immune complexes as mechanistic in HIV cure and diseases of aging. Highlights: Persons with HIV and diabetes have increased circulating CD3 + CD14 + T cell-monocyte complexes. CD3 + CD14 + T cell-monocytes are a heterogenous group of functional and dynamic complexes. We can detect HIV in T cell-monocyte complexes. The proportion of CD3 + CD14 + T cell-monocyte complexes is positively associated with blood glucose levels and negatively with plasma IL-10 and CD4 + T regulatory cells.

16.
Front Immunol ; 14: 1099356, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865544

RESUMEN

Persons with HIV (PWH) on long-term antiretroviral therapy (ART) have a higher incidence and prevalence of cardiometabolic diseases attributed, in part, to persistent inflammation despite viral suppression. In addition to traditional risk factors, immune responses to co-infections such as cytomegalovirus (CMV) may play an unappreciated role in cardiometabolic comorbidities and offer new potential therapeutic targets in a subgroup of individuals. We assessed the relationship of CX3CR1+, GPR56+, and CD57+/- T cells (termed CGC+) with comorbid conditions in a cohort of 134 PWH co-infected with CMV on long-term ART. We found that PWH with cardiometabolic diseases (non-alcoholic fatty liver disease, calcified coronary arteries, or diabetes) had higher circulating CGC+CD4+ T cells compared to metabolically healthy PWH. The traditional risk factor most correlated with CGC+CD4+ T cell frequency was fasting blood glucose, as well as starch/sucrose metabolites. While unstimulated CGC+CD4+ T cells, like other memory T cells, depend on oxidative phosphorylation for energy, they exhibited higher expression of carnitine palmitoyl transferase 1A compared to other CD4+ T cell subsets, suggesting a potentially greater capacity for fatty acid ß-oxidation. Lastly, we show that CMV-specific T cells against multiple viral epitopes are predominantly CGC+. Together, this study suggests that among PWH, CGC+ CD4+ T cells are frequently CMV-specific and are associated with diabetes, coronary arterial calcium, and non-alcoholic fatty liver disease. Future studies should assess whether anti-CMV therapies could reduce cardiometabolic disease risk in some individuals.


Asunto(s)
Linfocitos T CD4-Positivos , Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Calcio , Receptor 1 de Quimiocinas CX3C , Citomegalovirus , Factores de Riesgo , Subgrupos de Linfocitos T
17.
Laryngoscope ; 133(10): 2533-2539, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36728247

RESUMEN

OBJECTIVE: Despite recent scientific inquiry, idiopathic subglottic stenosis (iSGS) remains an enigmatic disease. The consistent demographics of the affected population suggest genetic factors may contribute to disease susceptibility. Given the inflammation observed in the affected proximal airway mucosa, we interrogated disease association with human leukocyte antigen (HLA) polymorphisms. Polymorphisms in the HLA locus have previously been shown to influence individuals' susceptibility to distinct inflammatory diseases. METHODS: High-resolution HLA typing of 37 iSGS patients was compared with 1,242,890 healthy Caucasian controls of European ancestry from the USA National Marrow Donor Program and 281 patients with granulomatosis with polyangiitis (GPA). RESULTS: Complete HLA genotyping of an iSGS population showed no significant associations when compared to a North American Caucasian control population. Unlike GPA patients, iSGS was not associated with allele DPB1*04:01 nor did allele homozygosity correlate with disease severity. CONCLUSIONS: There was not a detectable HLA association observed in iSGS. These results support the concept that iSGS possesses a distinct genetic architecture from GPA. If genetic susceptibility exists in iSGS, it likely lies outside the HLA locus. LEVEL OF EVIDENCE: NA, basic science Laryngoscope, 133:2533-2539, 2023.


Asunto(s)
Granulomatosis con Poliangitis , Laringoestenosis , Humanos , Genotipo , Constricción Patológica , Laringoestenosis/genética , Predisposición Genética a la Enfermedad , Alelos
18.
J Virol ; 97(2): e0147822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656015

RESUMEN

Little is known about the relationships between symptomatic early severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral load and upper airway mucosal gene expression and immune response. To examine the association of symptomatic SARS-CoV-2 early viral load with upper airway mucosal gene expression, we profiled the host mucosal transcriptome from nasopharyngeal swab samples from 68 adults with symptomatic, mild-to-moderate coronavirus disease 19 (COVID-19). We measured SARS-CoV-2 viral load using reverse transcription-quantitative PCR (RT-qPCR). We then examined the association of SARS-CoV-2 viral load with upper airway mucosal immune response. We detected SARS-CoV-2 in all samples and recovered >80% of the genome from 95% of the samples from symptomatic COVID-19 adults. The respiratory virome was dominated by SARS-CoV-2, with limited codetection of other respiratory viruses, with the human Rhinovirus C being identified in 4 (6%) samples. This limited codetection of other respiratory viral pathogens may be due to the implementation of public health measures, like social distancing and masking practices. We observed a significant positive correlation between SARS-CoV-2 viral load and interferon signaling (OAS2, OAS3, IFIT1, UPS18, ISG15, ISG20, IFITM1, and OASL), chemokine signaling (CXCL10 and CXCL11), and adaptive immune system (IFITM1, CD300E, and SIGLEC1) genes in symptomatic, mild-to-moderate COVID-19 adults, when adjusting for age, sex, and race. Interestingly, the expression levels of most of these genes plateaued at a cycle threshold (CT) value of ~25. Overall, our data show that the early nasal mucosal immune response to SARS-CoV-2 infection is viral load dependent, potentially modifying COVID-19 outcomes. IMPORTANCE Several prior studies have shown that SARS-CoV-2 viral load can predict the likelihood of disease spread and severity. A higher detectable SARS-CoV-2 plasma viral load was associated with worse respiratory disease severity. However, the relationship between SARS-CoV-2 viral load, airway mucosal gene expression, and immune response remains elusive. We profiled the nasal mucosal transcriptome from nasal samples collected from adults infected with SARS-CoV-2 during spring 2020 with mild-to-moderate symptoms using a comprehensive metatranscriptomics method. We observed a positive correlation between SARS-CoV-2 viral load, interferon signaling, chemokine signaling, and adaptive immune system in adults with COVID-19. Our data suggest that early nasal mucosal immune response to SARS-CoV-2 infection was viral load dependent and may modify COVID-19 outcomes.


Asunto(s)
COVID-19 , Expresión Génica , Mucosa Respiratoria , SARS-CoV-2 , Carga Viral , Adulto , Humanos , Quimiocinas/fisiología , COVID-19/inmunología , COVID-19/virología , Expresión Génica/inmunología , Inmunidad Mucosa/inmunología , Interferones/fisiología , SARS-CoV-2/genética , Mucosa Respiratoria/inmunología , Mucosa Respiratoria/virología
19.
bioRxiv ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36656777

RESUMEN

The Coronavirus (CoV) family includes a variety of viruses able to infect humans. Endemic CoVs that can cause common cold belong to the alphaCoV and betaCoV genera, with the betaCoV genus also containing subgenera with zoonotic and pandemic concern, including sarbecoCoV (SARS-CoV and SARS-CoV-2) and merbecoCoV (MERS-CoV). It is therefore warranted to explore pan-CoV vaccine concepts, to provide adaptive immune protection against new potential CoV outbreaks, particularly in the context of betaCoV sub lineages. To explore the feasibility of eliciting CD4 + T cell responses widely cross-recognizing different CoVs, we utilized samples collected pre-pandemic to systematically analyze T cell reactivity against representative alpha (NL63) and beta (OC43) common cold CoVs (CCC). Similar to previous findings on SARS-CoV-2, the S, N, M, and nsp3 antigens were immunodominant for both viruses while nsp2 and nsp12 were immunodominant for NL63 and OC43, respectively. We next performed a comprehensive T cell epitope screen, identifying 78 OC43 and 87 NL63-specific epitopes. For a selected subset of 18 epitopes, we experimentally assessed the T cell capability to cross-recognize sequences from representative viruses belonging to alphaCoV, sarbecoCoV, and beta-non-sarbecoCoV groups. We found general conservation within the alpha and beta groups, with cross-reactivity experimentally detected in 89% of the instances associated with sequence conservation of >67%. However, despite sequence conservation, limited cross-reactivity was observed in the case of sarbecoCoV (50% of instances), indicating that previous CoV exposure to viruses phylogenetically closer to this subgenera is a contributing factor in determining cross-reactivity. Overall, these results provided critical insights in the development of future pan-CoV vaccines.

20.
HLA ; 101(2): 124-137, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373948

RESUMEN

Several HLA allelic variants have been associated with protection from or susceptibility to infectious and autoimmune diseases. Here, we examined whether specific HLA alleles would be associated with different Mycobacterium tuberculosis (Mtb) infection outcomes. The HLA alleles present at the -A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, and -DRB3/4/5 loci were determined in a cohort of 636 individuals with known Mtb infection outcomes from South Africa and the United States. Among these individuals, 203 were QuantiFERON (QFT) negative, and 433 were QFT positive, indicating Mtb exposure. Of these, 99 QFT positive participants either had active tuberculosis (TB) upon enrollment or were diagnosed in the past. We found that DQA1*03:01, DPB1*04:02, and DRB4*01:01 were significantly more frequent in individuals with active TB (susceptibility alleles), as judged by Odds Ratios and associated p-values, while DPB1*105:01 was associated with protection from active TB. Peripheral blood mononuclear cells (PMBCs) from a subset of individuals were stimulated with Mtb antigens, revealing individuals who express any of the three susceptibility alleles were associated with lower magnitude of responses. Furthermore, we defined a gene signature associated with individuals expressing the susceptibility alleles that was characterized by lower expression of APC-related genes. In summary, we have identified specific HLA alleles associated with susceptibility to active TB and found that the expression of these alleles was associated with a decreased Mtb-specific T cell response and a specific gene expression signature. These results will help understand individual risk factors in progressing to active TB.


Asunto(s)
Transcriptoma , Tuberculosis , Humanos , Frecuencia de los Genes , Alelos , Leucocitos Mononucleares , Tuberculosis/genética , Haplotipos , Cadenas HLA-DRB1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...