Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Reprod ; 37(6): 1207-1228, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35459945

RESUMEN

STUDY QUESTION: What biological processes are linked to the signaling of the energy sensor 5'-AMP-activated protein kinase (AMPK) in mouse and human granulosa cells (GCs)? SUMMARY ANSWER: The lack of α1AMPK in GCs impacted cell cycle, adhesion, lipid metabolism and induced a hyperandrogenic response. WHAT IS KNOWN ALREADY: AMPK is expressed in the ovarian follicle, and its activation by pharmacological medications, such as metformin, inhibits the production of steroids. Polycystic ovary syndrome (PCOS) is responsible for infertility in approximately 5-20% of women of childbearing age and possible treatments include reducing body weight, improving lifestyle and the administration of a combination of drugs to improve insulin resistance, such as metformin. STUDY DESIGN, SIZE, DURATION: AMPK signaling was evaluated by analyzing differential gene expression in immortalized human granulosa cells (KGNs) with and without silencing α1AMPK using CRISPR/Cas9. In vivo studies included the use of a α1AMPK knock-out mouse model to evaluate the role of α1AMPK in folliculogenesis and fertility. Expression of α1AMPK was evaluated in primary human granulosa-luteal cells retrieved from women undergoing IVF with and without a lean PCOS phenotype (i.e. BMI: 18-25 kg/m2). PARTICIPANTS/MATERIALS, SETTING, METHODS: α1AMPK was disrupted in KGN cells and a transgenic mouse model. Cell viability, proliferation and metabolism were evaluated. Androgen production was evaluated by analyzing protein levels of relevant enzymes in the steroid pathway by western blots, and steroid levels obtained from in vitro and in vivo models by mass spectrometry. Differential gene expression in human GC was obtained by RNA sequencing. Analysis of in vivo murine folliculogenesis was performed by histology and immunochemistry, including evaluation of the anti-Müllerian hormone (AMH) marker. The α1AMPK gene expression was evaluated by quantitative RT-PCR in primary GCs obtained from women with the lean PCOS phenotype (n = 8) and without PCOS (n = 9). MAIN RESULTS AND THE ROLE OF CHANCE: Silencing of α1AMPK in KGN increased cell proliferation (P < 0.05 versus control, n = 4), promoted the use of fatty acids over glucose, and induced a hyperandrogenic response resulting from upregulation of two of the enzymes involved in steroid production, namely 3ß-hydroxysteroid dehydrogenase (3ßHSD) and P450 side-chain cleavage enzyme (P450scc) (P < 0.05, n = 3). Female mice deficient in α1AMPK had a 30% decrease in their ovulation rate (P < 0.05, n = 7) and litter size, a hyperandrogenic response (P < 0.05, n = 7) with higher levels of 3ßHSD and p450scc levels in the ovaries, and an increase in the population of antral follicles (P < 0.01, n = 10) compared to controls. Primary GCs from lean women with PCOS had lower α1AMPK mRNA expression levels than the control group (P < 0.05, n = 8-9). LARGE SCALE DATA: The FastQ files and metadata were submitted to the European Nucleotide Archive (ENA) at EMBL-EBI under accession number PRJEB46048. LIMITATIONS, REASONS FOR CAUTION: The human KGN is a not fully differentiated, transformed cell line. As such, to confirm the role of AMPK in GC and the PCOS phenotype, this model was compared to two others: an α1AMPK transgenic mouse model and primary differentiated granulosa-lutein cells from non-obese women undergoing IVF (with and without PCOS). A clear limitation is the small number of patients with PCOS utilized in this study and that the collection of human GCs was performed after hormonal stimulation. WIDER IMPLICATIONS OF THE FINDINGS: Our results reveal that AMPK is directly involved in steroid production in human GCs. In addition, AMPK signaling was associated with other processes frequently reported as dysfunctional in PCOS models, such as cell adhesion, lipid metabolism and inflammation. Silencing of α1AMPK in KGN promoted folliculogenesis, with increases in AMH. Evaluating the expression of the α1AMPK subunit could be considered as a marker of interest in infertility cases related to hormonal imbalances and metabolic disorders, including PCOS. STUDY FUNDING/COMPETING INTEREST(S): This study was financially supported by the Institut National de la Recherche Agronomique (INRA) and the national programme « FERTiNERGY ¼ funded by the French National Research Agency (ANR). The authors report no intellectual or financial conflicts of interest related to this work. R.K. is identified as personnel of the International Agency for Research on Cancer/World Health Organization. R.K. alone is responsible for the views expressed in this article and she does not necessarily represent the decisions, policy or views of the International Agency for Research on Cancer/World Health Organization. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Fenómenos Biológicos , Hiperandrogenismo , Infertilidad Femenina , Metformina , Síndrome del Ovario Poliquístico , Proteínas Quinasas Activadas por AMP , Animales , Hormona Antimülleriana/metabolismo , Femenino , Fertilidad , Humanos , Hiperandrogenismo/complicaciones , Metformina/farmacología , Ratones , Síndrome del Ovario Poliquístico/metabolismo
2.
Nat Metab ; 3(10): 1415-1431, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34675439

RESUMEN

Current pharmacological therapies for treating obesity are of limited efficacy. Genetic ablation or loss of function of AMP-activated protein kinase alpha 1 (AMPKα1) in steroidogenic factor 1 (SF1) neurons of the ventromedial nucleus of the hypothalamus (VMH) induces feeding-independent resistance to obesity due to sympathetic activation of brown adipose tissue (BAT) thermogenesis. Here, we show that body weight of obese mice can be reduced by intravenous injection of small extracellular vesicles (sEVs) delivering a plasmid encoding an AMPKα1 dominant negative mutant (AMPKα1-DN) targeted to VMH-SF1 neurons. The beneficial effect of SF1-AMPKα1-DN-loaded sEVs is feeding-independent and involves sympathetic nerve activation and increased UCP1-dependent thermogenesis in BAT. Our results underscore the potential of sEVs to specifically target AMPK in hypothalamic neurons and introduce a broader strategy to manipulate body weight and reduce obesity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/enzimología , Vesículas Extracelulares/metabolismo , Hipotálamo/enzimología , Obesidad/metabolismo , Animales , Metabolismo Energético , Ratones , Termogénesis , Pérdida de Peso
3.
Nutrients ; 13(4)2021 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-33918417

RESUMEN

Epidemiological studies have shown that carrot consumption may be associated with a lower risk of developing several metabolic dysfunctions. Our group previously determined that the Bolero (Bo) carrot variety exhibited vascular and hepatic tropism using cellular models of cardiometabolic diseases. The present study evaluated the potential metabolic and cardiovascular protective effect of Bo, grown under two conditions (standard and biotic stress conditions (BoBS)), in apolipoprotein E-knockout (ApoE-/-) mice fed with high fat diet (HFD). Effects on metabolic/hemodynamic parameters and on atherosclerotic lesions have been assessed. Both Bo and BoBS decreased plasma triglyceride and expression levels of genes implicated in hepatic de novo lipogenesis and lipid oxidation. BoBS supplementation decreased body weight gain, secretion of very-low-density lipoprotein, and increased cecal propionate content. Interestingly, Bo and BoBS supplementation improved hemodynamic parameters by decreasing systolic, diastolic, and mean blood pressure. Moreover, Bo improved cardiac output. Finally, Bo and BoBS substantially reduced the aortic root lesion area. These results showed that Bo and BoBS enriched diets corrected most of the metabolic and cardiovascular disorders in an atherosclerosis-prone genetic mouse model and may therefore represent an interesting nutritional approach for the prevention of cardiovascular diseases.


Asunto(s)
Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/prevención & control , Daucus carota , Suplementos Dietéticos , Placa Aterosclerótica/terapia , Animales , Aorta/patología , Apolipoproteínas E/deficiencia , Gasto Cardíaco , Factores de Riesgo Cardiometabólico , Enfermedades Cardiovasculares/genética , Ciego/metabolismo , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Peroxidación de Lípido , Lipogénesis , Lipoproteínas VLDL/sangre , Ratones , Ratones Noqueados , Placa Aterosclerótica/genética , Placa Aterosclerótica/patología , Propionatos/metabolismo , Triglicéridos/sangre , Aumento de Peso
4.
Biomedicines ; 8(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198144

RESUMEN

Epidemiological studies describe the association between apple consumption and improved cardiovascular and metabolic dysfunction. Our recent multiparametric screening on cellular model studies has shown that apples exhibit vascular tropism including Granny Smith (GS) variety independently of the storage condition. The present study aimed to evaluate the cardiovascular and metabolic protection of supplementation of GS variety after storage in classic cold (GSCC) and extreme ultra-low oxygen conditions (GSXO) in the apolipoprotein E-deficient 8-week-old mice fed with high fat diet for 14 weeks. Supplementation with GSCC and GXO decreases circulating triglycerides, the expression of genes involved in lipogenesis, without change in cholesterol and glucose concentrations and HOMA-IR. Only GSXO supplementation ameliorates body weight gain, insulin level, and HDL/LDL ratio. GSXO supplementation does not modify cardiac parameters; while supplementation with GSCC decreases heart rate and improves cardiac output. Interestingly, GSCC and GSXO reduce systolic and diastolic blood pressure with a differential time course of action. These effects are associated with substantial decrease of atherosclerotic lesions. These data reinforce the knowledge about the vascular tropism of apple supplementation and underscore their ability to improve both cardiovascular and metabolic alterations in a mouse model of atherosclerosis.

5.
Nutrients ; 12(2)2020 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-32012793

RESUMEN

Carrots' genotype and growing conditions influence their potential properties to fight against cardiovascular and metabolic diseases. The present study evaluated the influence of carrot genotypes contrasted by root color (Bolero, Presto, Karotan, Deep Purple, Kintoki and Blanche des Vosges) growing under standard, water-restricted, biotic stress (Alternaria dauci inoculation), and combined stress conditions (water restriction and A.dauci inoculation). The effect of carrots' polyphenol and carotenoid content was assessed on endothelial and smooth muscle cells, hepatocytes, adipocytes and macrophages functions (oxidative stress, apoptosis, proliferation, lipid accumulation and inflammation). Independently of varieties or growing conditions, all carrot extracts affected vascular cells' oxidative stress and apoptosis, and metabolic cells' oxidative stress and lipid accumulation. Three clusters were revealed and displayed beneficial properties mostly for adipocytes function, smooth muscle cells and hepatocytes, and endothelial cells and hepatocytes, respectively. Karotan and Presto varieties exhibited endothelial tropism while Blanche des Vosges targeted adipocytes. Carrots under biotic stress are more efficient in inducing beneficial effects, with the Bolero variety being the most effective. However, extracts from carrots which grew under combined stress conditions had limited beneficial effects. This report underscores the use of certain carrot extracts as potential effective nutraceutical supplements for metabolic diseases.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Daucus carota/genética , Genotipo , Pigmentación , Extractos Vegetales/farmacología , Raíces de Plantas/química , Animales , Células Cultivadas , Daucus carota/crecimiento & desarrollo , Daucus carota/metabolismo , Humanos , Ratones , Extractos Vegetales/química
6.
Oxid Med Cell Longev ; 2019: 6560498, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636807

RESUMEN

Despite long traditional utilization and some reports on the antihyperglycemic and antihyperlipidemic action of Cassia siamea, the mechanisms involved have not been investigated yet. Thus, the objective of the present study was to investigate whether and how oral administration of the ethanolic extract of Cassia siamea Lam leaves (LECS) improves glucose and insulin homoeostasis, liver damage, and endothelial dysfunction in an experimental model of type 2 diabetes, the leptin-deficient ob/ob mice. Oxidative stress and protein expression of insulin-dependent and insulin -independent signaling pathways were studied. Obese ( ob/ob) vs. control (ob/+) mice were treated daily with intragastric administration of either vehicle or LECS (200 mg/kg, per day) for 4 weeks. Fasting blood glucose, body weight, food intake, glucose and insulin tolerance, oxidative stress, and liver damage as well as vascular complications with respect to endothelial dysfunction were examined. Administration of LECS in obese mice significantly reduced blood glucose and insulin levels, improved glucose tolerance and insulin sensitivity, and restored the increase of circulating AST and ALT without modification of body weight and food intake. These effects were associated with increased activity of both insulin and AMPK pathways in the liver and skeletal muscles. Of particular interest, administration of LECS in obese mice completely prevented the endothelial dysfunction resulting from an increased NO· and decreased reactive oxygen species (ROS) production in the aorta. Altogether, oral administration of LECS remarkably attenuates features of type 2 diabetes on glucose, hepatic inflammation, insulin resistance, endothelial function, and vascular oxidative stress, being as most of these effects are related to insulin-dependent and insulin-independent mechanisms. Therefore, this study points for the therapeutic potential of Cassia siamea in correcting both metabolic and vascular alterations linked to type 2 diabetes.


Asunto(s)
Cassia/química , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Etanol/química , Extractos Vegetales/química , Hojas de la Planta/química , Animales , Femenino , Resistencia a la Insulina , Masculino , Ratones
7.
Oxid Med Cell Longev ; 2019: 9464608, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31183001

RESUMEN

Traditional remedies prepared from Lannea microcarpa leaves, barks, roots, and fruits are used to treat many diseases including hypertension. This study investigated whether oral administration of the ethyl acetate fraction of Lannea microcarpa trunk barks (LMAE) corrects angiotensin (Ang) II-induced hypertension in mice. Its effects on vascular function were specifically investigated. Experiments explored hemodynamic and echocardiographic parameters in vivo and vascular reactivity to acetylcholine (ACh) and CaCl2 ex vivo on isolated aortas. Mice received LMAE for 3 weeks (50 mg/kg/day) by oral gavage. In the last two weeks of treatment, mice were implanted with osmotic minipumps delivering NaCl (0.9%) or Ang II (0.5 mg/kg/day). LMAE completely prevented the increase in systolic and diastolic blood pressure induced by Ang II. Echocardiographic and kidney parameters were not affected by the different conditions. LMAE abrogated Ang II-induced impairment of ACh-induced relaxation without affecting that of sodium nitroprusside. LMAE also completely prevented CaCl2-induced contraction in KCl-exposed aorta ex vivo. The extract alone did not modify superoxide (O2 -) and nitric oxide (NO·) production in femoral arteries from control mice but significantly limited Ang II-induced O2 - production. These effects were associated with reduced expression of inducible isoform of cyclooxygenase- (COX-) 2 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase isoform NOX-2 in aortas. Finally, phytochemical analysis showed that LMAE contains sterols, triterpenes, coumarins, and anthraquinone. These results showed that LMAE prevents Ang II-induced hypertension and vascular dysfunction through a reduction of oxidative stress linked to COX-2 and NOX-2 pathway and inhibition of calcium entry. This study provides pharmacological basis of the empirical use of Lannea microcarpa trunk bark extract against hypertension.


Asunto(s)
Acetatos/química , Anacardiaceae/química , Angiotensina II/farmacología , Hipertensión/tratamiento farmacológico , Extractos Vegetales/uso terapéutico , Animales , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Ratones , NADP/metabolismo , Estrés Oxidativo/efectos de los fármacos , Prostaglandina-Endoperóxido Sintasas/metabolismo , Superóxidos/metabolismo
8.
Food Funct ; 9(11): 5855-5867, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30358797

RESUMEN

Epidemiological studies reported that apple consumption is associated with a decrease of cardiovascular and metabolic dysfunction, probably due to the polyphenols and fibers present in this fruit. The storage conditions and genetic origin of apples have been reported to influence their content and, as a consequence, their pharmacological properties. The present study evaluated the influence of varieties and storage conditions of traditional and highly appreciated apples including Gala, Golden Delicious, Granny Smith and Pink Lady varieties after harvest and storage under classic cold conditions, under a controlled atmosphere, or under extreme ultra-low oxygen conditions. Thus, a multi-parametric screening on cell models associated with vascular and metabolic dysfunctions - such as endothelial and smooth muscle cells, hepatocytes, adipocytes and macrophages - in relation to the apple polyphenol content has been developed. This strategy demonstrated that, overall, peeled apple samples exhibited a vascular tropism and acted mainly on proliferation and oxidative stress in endothelial and smooth muscle cells. Apple extracts appeared to be less effective on adipocytes and macrophages, but they exhibited antioxidant properties in hepatocytes. Among the varieties, Gala and Golden Delicious were the most efficient against the processes involved in the development of atherosclerosis. Concerning storage conditions, most of the apple varieties were more efficient under harvest conditions, while they could not be discriminated under all other cold conditions and the concentration used, except for the Gala samples. Interestingly, pharmacological properties were associated with the polyphenol profiles of freeze dried apple flesh powder. The present report revealed the potential use of some apple extracts as effective food supplements or nutraceuticals for the prevention and/or management of cardiovascular and metabolic diseases.


Asunto(s)
Almacenamiento de Alimentos , Frutas/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Malus/química , Miocitos del Músculo Liso/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dieta , Análisis de los Alimentos , Manipulación de Alimentos , Liofilización , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-6/metabolismo , Malus/clasificación , Ratones , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo/efectos de los fármacos , Extractos Vegetales/farmacología , Polifenoles/farmacología , Polvos , Células RAW 264.7 , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...