Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 35(10): 2077-90, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27406087

RESUMEN

KEY MESSAGE: Functional characterization and ectopic expression studies of chalcone synthase mutants implicate the role of phenylalanine in tailoring the substrate specificity of type III polyketide synthase. Chalcone synthase (CHS) is a plant-specific type III polyketide synthase that catalyzes the synthesis of flavonoids. Native CHS enzyme does not possess any functional activity on N-methylanthraniloyl-CoA, which is the substrate for acridione/quinolone alkaloid biosynthesis. Here, we report the functional transformation of chalcone synthase protein from Emblica officinalis (EoCHS) to quinolone and acridone synthase (ACS) with single amino acid substitutions. A cDNA of 1173 bp encoding chalcone synthase was isolated from E. officinalis and mutants (F215S and F265V) were generated by site-directed mutagenesis. Molecular modeling studies of EoCHS did not show any active binding with N-methylanthraniloyl-CoA, but the mutants of EoCHS showed strong affinity to the same. As revealed by the modeling studies, functional analysis of CHS mutants showed that they could utilize p-coumaroyl-CoA as well as N-methylanthraniloyl-CoA as substrates and yield active products such as naringenin, 4-hydroxy 1-methyl 2(H) quinolone and 1,3-dihydroxy-n-methyl acridone. Exchange of a single amino acid in EoCHS (F215S and F265V) resulted in functionally active mutants that preferred N-methylanthraniloyl-CoA over p-coumaroyl-CoA. This can be attributed to the increase in the relative volume of active sites in mutants by mutation. Moreover, metabolomic and MS analyses of tobacco leaves transiently expressing mutant genes showed high levels of naringenin, acridones and quinolone derivatives compared to wild-type CHS. This is the first report demonstrating the functional activity of EoCHS mutants with N-methylanthraniloyl-CoA and these results indicate the role of phenylalanine in altering the substrate specificity and in the evolution of type III PKSs.


Asunto(s)
Expresión Génica Ectópica , Mutación/genética , Phyllanthus emblica/enzimología , Phyllanthus emblica/genética , Sintasas Poliquetidas/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Cromatografía Líquida de Alta Presión , Simulación por Computador , ADN Complementario/genética , Electroforesis en Gel de Poliacrilamida , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Metabolómica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fenilalanina/genética , Hojas de la Planta/genética , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Análisis de Componente Principal , Alineación de Secuencia , Nicotiana/metabolismo
2.
Dev Genes Evol ; 226(4): 269-85, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27138283

RESUMEN

Zingiberaceae or 'ginger family' is the largest family in the order 'Zingiberales' with more than 1300 species in 52 genera, which are mostly distributed throughout Asia, tropical Africa and the native regions of America with their maximum diversity in Southeast Asia. Many of the members are important spice, medicinal or ornamental plants including ginger, turmeric, cardamom and kaempferia. These plants are distinguished for the highly valuable metabolic products, which are synthesised through phenylpropanoid pathway, where type III polyketide synthase is the key enzyme. In our present study, we used sequence, structural and evolutionary approaches to scrutinise the type III polyketide synthase (PKS) repertoire encoded in the Zingiberaceae family. Highly conserved amino acid residues in the sequence alignment and phylogram suggested strong relationships between the type III PKS members of Zingiberaceae. Sequence and structural level investigation of type III PKSs showed a small number of variations in the substrate binding pocket, leading to functional divergence among these PKS members. Molecular evolutionary studies indicate that type III PKSs within Zingiberaceae evolved under strong purifying selection pressure, and positive selections were rarely detected in the family. Structural modelling and protein-small molecule interaction studies on Zingiber officinale PKS 'a representative from Zingiberaceae' suggested that the protein is comparatively stable without much disorder and exhibited wide substrate acceptance.


Asunto(s)
Sintasas Poliquetidas/genética , Zingiberaceae/enzimología , Zingiberaceae/genética , Secuencia de Aminoácidos , Simulación por Computador , Evolución Molecular , Filogenia , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Alineación de Secuencia , Zingiberaceae/clasificación , Zingiberaceae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...