Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Am J Hum Genet ; 111(6): 1140-1164, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38776926

RESUMEN

Detection of structural variants (SVs) is currently biased toward those that alter copy number. The relative contribution of inversions toward genetic disease is unclear. In this study, we analyzed genome sequencing data for 33,924 families with rare disease from the 100,000 Genomes Project. From a database hosting >500 million SVs, we focused on 351 genes where haploinsufficiency is a confirmed disease mechanism and identified 47 ultra-rare rearrangements that included an inversion (24 bp to 36.4 Mb, 20/47 de novo). Validation utilized a number of orthogonal approaches, including retrospective exome analysis. RNA-seq data supported the respective diagnoses for six participants. Phenotypic blending was apparent in four probands. Diagnostic odysseys were a common theme (>50 years for one individual), and targeted analysis for the specific gene had already been performed for 30% of these individuals but with no findings. We provide formal confirmation of a European founder origin for an intragenic MSH2 inversion. For two individuals with complex SVs involving the MECP2 mutational hotspot, ambiguous SV structures were resolved using long-read sequencing, influencing clinical interpretation. A de novo inversion of HOXD11-13 was uncovered in a family with Kantaputra-type mesomelic dysplasia. Lastly, a complex translocation disrupting APC and involving nine rearranged segments confirmed a clinical diagnosis for three family members and resolved a conundrum for a sibling with a single polyp. Overall, inversions play a small but notable role in rare disease, likely explaining the etiology in around 1/750 families across heterogeneous clinical cohorts.


Asunto(s)
Inversión Cromosómica , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Masculino , Femenino , Inversión Cromosómica/genética , Linaje , Genoma Humano , Secuenciación Completa del Genoma , Proteína 2 de Unión a Metil-CpG/genética , Mutación , Proteínas de Homeodominio/genética , Persona de Mediana Edad
2.
HGG Adv ; 3(3): 100113, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35586607

RESUMEN

To facilitate early deployment of whole-genome sequencing (WGS) for severely ill children, a standardized pipeline for WGS analysis with timely turnaround and primary care pediatric uptake is needed. We developed a bioinformatics pipeline for comprehensive gene-agnostic trio WGS analysis of children suspected of having an undiagnosed monogenic disease that included detection and interpretation of primary genetic mechanisms of disease, including SNVs/indels, CNVs/SVs, uniparental disomy (UPD), imprinted genes, short tandem repeat expansions, mobile element insertions, SMN1/2 copy number calling, and mitochondrial genome variants. We assessed primary care practitioner experience and competence in a large cohort of 521 families (comprising 90% WGS trios). Children were identified by primary practitioners for recruitment, and we used the UK index of multiple deprivation to confirm lack of patient socio-economic status ascertainment bias. Of the 521 children sequenced, 176 (34%) received molecular diagnoses, with rates as high as 45% for neurology clinics. Twenty-three of the diagnosed cases (13%) required bespoke methods beyond routine SNV/CNV analysis. In our multidisciplinary clinician user experience assessment, both pediatricians and clinical geneticists expressed strong support for rapid WGS early in the care pathway, but requested further training in determining patient selection, consenting, and variant interpretation. Rapid trio WGS provides an efficacious single-pass screening test for children when deployed by primary practitioners in clinical settings that carry high a priori risk for rare pediatric disease presentations.

3.
Eur J Immunol ; 41(11): 3291-300, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21809339

RESUMEN

ß-Defensins are cationic host defense peptides that form an amphipathic structure stabilized by three intramolecular disulfide bonds. They are key players in innate and adaptive immunity and have recently been shown to limit the production of pro-inflammatory cytokines in TLR4-stimulated macrophages. In the present study, we investigate the mechanism underlying the anti-inflammatory effect of human ß-defensin 3 (hBD3). We show that the canonical structure of hBD3 is required for this immunosuppressive effect and that hBD3 rapidly associates with and enters macrophages. Examination of the global effect of hBD3 on transcription in TLR4-stimulated macrophages shows that hBD3 inhibits the transcription of pro-inflammatory genes. Among the altered genes there is significant enrichment of groups involved in the positive regulation of NF-κB including components of Toll-like receptor signaling pathways. We confirm these observations by showing corresponding decreases in protein levels of pro-inflammatory cytokines and cell surface molecules. In addition, we show that hBD3 reduces NF-κB signaling in cells transfected with MyD88 or TRIF and that hBD3 inhibits the TLR4 response in both MyD88- and TRIF-deficient macrophages. Taken together these findings suggest that the mechanism of hBD3 anti-inflammatory activity involves specific targeting of TLR signaling pathways resulting in transcriptional repression of pro-inflammatory genes.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/inmunología , Expresión Génica/inmunología , Inflamación/inmunología , Factor 88 de Diferenciación Mieloide/inmunología , Transducción de Señal/inmunología , beta-Defensinas/inmunología , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunomodulación , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Relación Estructura-Actividad , Transcripción Genética , beta-Defensinas/química , beta-Defensinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA