Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Biomed Inform ; 154: 104641, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38642627

RESUMEN

OBJECTIVE: Clinical trials involve the collection of a wealth of data, comprising multiple diverse measurements performed at baseline and follow-up visits over the course of a trial. The most common primary analysis is restricted to a single, potentially composite endpoint at one time point. While such an analytical focus promotes simple and replicable conclusions, it does not necessarily fully capture the multi-faceted effects of a drug in a complex disease setting. Therefore, to complement existing approaches, we set out here to design a longitudinal multivariate analytical framework that accepts as input an entire clinical trial database, comprising all measurements, patients, and time points across multiple trials. METHODS: Our framework composes probabilistic principal component analysis with a longitudinal linear mixed effects model, thereby enabling clinical interpretation of multivariate results, while handling data missing at random, and incorporating covariates and covariance structure in a computationally efficient and principled way. RESULTS: We illustrate our approach by applying it to four phase III clinical trials of secukinumab in Psoriatic Arthritis (PsA) and Rheumatoid Arthritis (RA). We identify three clinically plausible latent factors that collectively explain 74.5% of empirical variation in the longitudinal patient database. We estimate longitudinal trajectories of these factors, thereby enabling joint characterisation of disease progression and drug effect. We perform benchmarking experiments demonstrating our method's competitive performance at estimating average treatment effects compared to existing statistical and machine learning methods, and showing that our modular approach leads to relatively computationally efficient model fitting. CONCLUSION: Our multivariate longitudinal framework has the potential to illuminate the properties of existing composite endpoint methods, and to enable the development of novel clinical endpoints that provide enhanced and complementary perspectives on treatment response.

2.
BMC Genomics ; 24(1): 562, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37736706

RESUMEN

BACKGROUND: Selective constraint, the depletion of variation due to negative selection, provides insights into the functional impact of variants and disease mechanisms. However, its characterization in mice, the most commonly used mammalian model, remains limited. This study aims to quantify mouse gene constraint using a new metric called the nonsynonymous observed expected ratio (NOER) and investigate its relationship with gene function. RESULTS: NOER was calculated using whole-genome sequencing data from wild mouse populations (Mus musculus sp and Mus spretus). Positive correlations were observed between mouse gene constraint and the number of associated knockout phenotypes, indicating stronger constraint on pleiotropic genes. Furthermore, mouse gene constraint showed a positive correlation with the number of pathogenic variant sites in their human orthologues, supporting the relevance of mouse models in studying human disease variants. CONCLUSIONS: NOER provides a resource for assessing the fitness consequences of genetic variants in mouse genes and understanding the relationship between gene constraint and function. The study's findings highlight the importance of pleiotropy in selective constraint and support the utility of mouse models in investigating human disease variants. Further research with larger sample sizes can refine constraint estimates in mice and enable more comprehensive comparisons of constraint between mouse and human orthologues.


Asunto(s)
Músculos , Mytilidae , Humanos , Animales , Ratones , Modelos Animales de Enfermedad , Tamaño de la Muestra , Secuenciación Completa del Genoma , Mamíferos
3.
Am J Hum Genet ; 110(10): 1817-1824, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37659414

RESUMEN

Response to the anti-IL17 monoclonal antibody secukinumab is heterogeneous, and not all participants respond to treatment. Understanding whether this heterogeneity is driven by genetic variation is a key aim of pharmacogenetics and could influence precision medicine approaches in inflammatory diseases. Using changes in disease activity scores across 5,218 genotyped individuals from 19 clinical trials across four indications (psoriatic arthritis, psoriasis, ankylosing spondylitis, and rheumatoid arthritis), we tested whether genetics predicted response to secukinumab. We did not find any evidence of association between treatment response and common variants, imputed HLA alleles, polygenic risk scores of disease susceptibility, or cross-disease components of shared genetic risk. This suggests that anti-IL17 therapy is equally effective regardless of an individual's genetic background, a finding that has important implications for future genetic studies of biological therapy response in inflammatory diseases.


Asunto(s)
Artritis Psoriásica , Artritis Reumatoide , Psoriasis , Humanos , Artritis Psoriásica/tratamiento farmacológico , Artritis Psoriásica/genética , Psoriasis/tratamiento farmacológico , Psoriasis/genética , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética , Genotipo
4.
Mamm Genome ; 34(2): 180-199, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37294348

RESUMEN

Reference ranges provide a powerful tool for diagnostic decision-making in clinical medicine and are enormously valuable for understanding normality in pre-clinical scientific research that uses in vivo models. As yet, there are no published reference ranges for electrocardiography (ECG) in the laboratory mouse. The first mouse-specific reference ranges for the assessment of electrical conduction are reported herein generated from an ECG dataset of unprecedented scale. International Mouse Phenotyping Consortium data from over 26,000 conscious or anesthetized C57BL/6N wildtype control mice were stratified by sex and age to develop robust ECG reference ranges. Interesting findings include that heart rate and key elements from the ECG waveform (RR-, PR-, ST-, QT-interval, QT corrected, and QRS complex) demonstrate minimal sexual dimorphism. As expected, anesthesia induces a decrease in heart rate and was shown for both inhalation (isoflurane) and injectable (tribromoethanol) anesthesia. In the absence of pharmacological, environmental, or genetic challenges, we did not observe major age-related ECG changes in C57BL/6N-inbred mice as the differences in the reference ranges of 12-week-old compared to 62-week-old mice were negligible. The generalizability of the C57BL/6N substrain reference ranges was demonstrated by comparison with ECG data from a wide range of non-IMPC studies. The close overlap in data from a wide range of mouse strains suggests that the C57BL/6N-based reference ranges can be used as a robust and comprehensive indicator of normality. We report a unique ECG reference resource of fundamental importance for any experimental study of cardiac function in mice.


Asunto(s)
Electrocardiografía , Técnicas Electrofisiológicas Cardíacas , Ratones , Animales , Ratones Endogámicos C57BL , Ratones Endogámicos
5.
Nucleic Acids Res ; 51(D1): D1038-D1045, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305825

RESUMEN

The International Mouse Phenotyping Consortium (IMPC; https://www.mousephenotype.org/) web portal makes available curated, integrated and analysed knockout mouse phenotyping data generated by the IMPC project consisting of 85M data points and over 95,000 statistically significant phenotype hits mapped to human diseases. The IMPC portal delivers a substantial reference dataset that supports the enrichment of various domain-specific projects and databases, as well as the wider research and clinical community, where the IMPC genotype-phenotype knowledge contributes to the molecular diagnosis of patients affected by rare disorders. Data from 9,000 mouse lines and 750 000 images provides vital resources enabling the interpretation of the ignorome, and advancing our knowledge on mammalian gene function and the mechanisms underlying phenotypes associated with human diseases. The resource is widely integrated and the lines have been used in over 4,600 publications indicating the value of the data and the materials.


Asunto(s)
Bases de Datos Factuales , Modelos Animales de Enfermedad , Ratones Noqueados , Animales , Humanos , Ratones , Fenotipo
6.
Comput Biol Med ; 151(Pt A): 106211, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36327884

RESUMEN

Large-scale neuroimaging datasets present unique challenges for automated processing pipelines. Motivated by a large clinical trials dataset with over 235,000 MRI scans, we consider the challenge of defacing - anonymisation to remove identifying facial features. The defacing process must undergo quality control (QC) checks to ensure that the facial features have been removed and that the brain tissue is left intact. Visual QC checks are time-consuming and can cause delays in preparing data. We have developed a convolutional neural network (CNN) that can assist with the QC of the application of MRI defacing; our CNN is able to distinguish between scans that are correctly defaced and can classify defacing failures into three sub-types to facilitate parameter tuning during remedial re-defacing. Since integrating the CNN into our anonymisation pipeline, over 75,000 scans have been processed. Strict thresholds have been applied so that ambiguous classifications are referred for visual QC checks, however all scans still undergo an efficient verification check before being marked as passed. After applying the thresholds, our network is 92% accurate and can classify nearly half of the scans without the need for protracted manual checks. Our model can generalise across MRI modalities and has comparable performance when tested on an independent dataset. Even with the introduction of the verification checks, incorporation of the CNN has reduced the time spent undertaking QC checks by 42% during initial defacing, and by 35% overall. With the help of the CNN, we have been able to successfully deface 96% of the scans in the project whilst maintaining high QC standards. In a similarly sized new project, we would expect the model to reduce the time spent on manual QC checks by 125 h. Our approach is applicable to other projects with the potential to greatly improve the efficiency of imaging anonymisation pipelines.


Asunto(s)
Imagen por Resonancia Magnética , Redes Neurales de la Computación , Imagen por Resonancia Magnética/métodos , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Control de Calidad , Procesamiento de Imagen Asistido por Computador/métodos
7.
Genome Med ; 14(1): 119, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36229886

RESUMEN

BACKGROUND: The diagnostic rate of Mendelian disorders in sequencing studies continues to increase, along with the pace of novel disease gene discovery. However, variant interpretation in novel genes not currently associated with disease is particularly challenging and strategies combining gene functional evidence with approaches that evaluate the phenotypic similarities between patients and model organisms have proven successful. A full spectrum of intolerance to loss-of-function variation has been previously described, providing evidence that gene essentiality should not be considered as a simple and fixed binary property. METHODS: Here we further dissected this spectrum by assessing the embryonic stage at which homozygous loss-of-function results in lethality in mice from the International Mouse Phenotyping Consortium, classifying the set of lethal genes into one of three windows of lethality: early, mid, or late gestation lethal. We studied the correlation between these windows of lethality and various gene features including expression across development, paralogy and constraint metrics together with human disease phenotypes. We explored a gene similarity approach for novel gene discovery and investigated unsolved cases from the 100,000 Genomes Project. RESULTS: We found that genes in the early gestation lethal category have distinct characteristics and are enriched for genes linked with recessive forms of inherited metabolic disease. We identified several genes sharing multiple features with known biallelic forms of inborn errors of the metabolism and found signs of enrichment of biallelic predicted pathogenic variants among early gestation lethal genes in patients recruited under this disease category. We highlight two novel gene candidates with phenotypic overlap between the patients and the mouse knockouts. CONCLUSIONS: Information on the developmental period at which embryonic lethality occurs in the knockout mouse may be used for novel disease gene discovery that helps to prioritise variants in unsolved rare disease cases.


Asunto(s)
Embrión de Mamíferos , Genes Letales , Animales , Femenino , Homocigoto , Humanos , Ratones , Ratones Noqueados , Fenotipo , Embarazo
8.
PLoS Biol ; 20(8): e3001723, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35944064

RESUMEN

The function of the majority of genes in the human and mouse genomes is unknown. Investigating and illuminating this dark genome is a major challenge for the biomedical sciences. The International Mouse Phenotyping Consortium (IMPC) is addressing this through the generation and broad-based phenotyping of a knockout (KO) mouse line for every protein-coding gene, producing a multidimensional data set that underlies a genome-wide annotation map from genes to phenotypes. Here, we develop a multivariate (MV) statistical approach and apply it to IMPC data comprising 148 phenotypes measured across 4,548 KO lines. There are 4,256 (1.4% of 302,997 observed data measurements) hits called by the univariate (UV) model analysing each phenotype separately, compared to 31,843 (10.5%) hits in the observed data results of the MV model, corresponding to an estimated 7.5-fold increase in power of the MV model relative to the UV model. One key property of the data set is its 55.0% rate of missingness, resulting from quality control filters and incomplete measurement of some KO lines. This raises the question of whether it is possible to infer perturbations at phenotype-gene pairs at which data are not available, i.e., to infer some in vivo effects using statistical analysis rather than experimentation. We demonstrate that, even at missing phenotypes, the MV model can detect perturbations with power comparable to the single-phenotype analysis, thereby filling in the complete gene-phenotype map with good sensitivity. A factor analysis of the MV model's fitted covariance structure identifies 20 clusters of phenotypes, with each cluster tending to be perturbed collectively. These factors cumulatively explain 75% of the KO-induced variation in the data and facilitate biological interpretation of perturbations. We also demonstrate that the MV approach strengthens the correspondence between IMPC phenotypes and existing gene annotation databases. Analysis of a subset of KO lines measured in replicate across multiple laboratories confirms that the MV model increases power with high replicability.


Asunto(s)
Genoma , Mamíferos , Animales , Bases de Datos Factuales , Genoma/genética , Humanos , Mamíferos/genética , Ratones , Ratones Noqueados , Anotación de Secuencia Molecular , Fenotipo
9.
Stat Sci ; 37(2): 183-206, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35664221

RESUMEN

We present interoperability as a guiding framework for statistical modelling to assist policy makers asking multiple questions using diverse datasets in the face of an evolving pandemic response. Interoperability provides an important set of principles for future pandemic preparedness, through the joint design and deployment of adaptable systems of statistical models for disease surveillance using probabilistic reasoning. We illustrate this through case studies for inferring and characterising spatial-temporal prevalence and reproduction numbers of SARS-CoV-2 infections in England.

10.
Pain ; 163(6): 1139-1157, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35552317

RESUMEN

ABSTRACT: Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant). We identified 13 single-gene knockout strains with altered nocifensive behavior in 1 or more assays. All these novel mouse models are openly available to the scientific community to study gene function. Two of the 13 genes (Gria1 and Htr3a) have been previously reported with nociception-related phenotypes in genetically engineered mouse strains and represent useful benchmarking standards. One of the 13 genes (Cnrip1) is known from human studies to play a role in pain modulation and the knockout mouse reported herein can be used to explore this function further. The remaining 10 genes (Abhd13, Alg6, BC048562, Cgnl1, Cp, Mmp16, Oxa1l, Tecpr2, Trim14, and Trim2) reveal novel pathways involved in nociception and may provide new knowledge to better understand genetic mechanisms of inflammatory pain and to serve as models for therapeutic target validation and drug development.


Asunto(s)
Nocicepción , Dolor , Animales , Adyuvante de Freund/toxicidad , Ratones , Ratones Noqueados , Dolor/genética , Dimensión del Dolor
11.
Biol Lett ; 18(3): 20210630, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35317627

RESUMEN

Understanding the genetic aetiology of loci associated with a disease is crucial for developing preventative measures and effective treatments. Mouse models are used extensively to understand human pathobiology and mechanistic functions of disease-associated loci. However, the utility of mouse models is limited in part by evolutionary divergence in transcription regulation for pathways of interest. Here, we summarize the alignment of genomic (exonic and multi-cell regulatory) annotations alongside Mendelian and complex disease-associated variant sites between humans and mice. Our results highlight the importance of understanding evolutionary divergence in transcription regulation when interpreting functional studies using mice as models for human disease variants.


Asunto(s)
Regulación de la Expresión Génica , Genoma , Animales , Humanos , Ratones
12.
Lancet Reg Health Eur ; 15: 100322, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35187517

RESUMEN

BACKGROUND: Ethnically diverse and socio-economically deprived communities have been differentially affected by the COVID-19 pandemic in the UK. METHOD: Using a multilevel regression model we assessed the time-varying association between SARS-CoV-2 infections and areal level deprivation and ethnicity from 1st of June 2020 to the 19th of September 2021. We separately considered weekly test positivity rate and estimated debiased prevalence at the Lower Tier Local Authority (LTLA) level, adjusting for confounders and spatio-temporal correlation structure. FINDINGS: Comparing the least deprived and predominantly White areas with most deprived and predominantly non-White areas over the whole study period, the weekly positivity rate increases from 2·977% (95% CrI 2.913%-3.029%) to 3·347% (95% CrI 3.300%-3.402%). Similarly, prevalence increases from 0·369% (95% CrI 0.361%-0.375%) to 0·405% (95% CrI 0.399%-0.412%). Deprivation has a stronger effect until October 2020, while the effect of ethnicity becomes more pronounced at the peak of the second wave and then again in May-June 2021. In the second wave of the pandemic, LTLAs with large South Asian populations were the most affected, whereas areas with large Black populations did not show increased values for either outcome during the entire period under analysis. INTERPRETATION: Deprivation and proportion of non-White populations are both associated with an increased COVID-19 burden in terms of disease spread and monitoring, but the strength of association varies over the course of the pandemic and for different ethnic subgroups. The consistency of results across the two outcomes suggests that deprivation and ethnicity have a differential impact on disease exposure or susceptibility rather than testing access and habits. FUNDINGS: EPSRC, MRC, The Alan Turing Institute, NIH, UKHSA, DHSC.

14.
Epigenetics Chromatin ; 15(1): 4, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35090532

RESUMEN

BACKGROUND: Topologically associating domains (TADs) are thought to act as functional units in the genome. TADs co-localise genes and their regulatory elements as well as forming the unit of genome switching between active and inactive compartments. This has led to the speculation that genes which are required for similar processes may fall within the same TADs, allowing them to share regulatory programs and efficiently switch between chromatin compartments. However, evidence to link genes within TADs to the same regulatory program is limited. RESULTS: We investigated the functional similarity of genes which fall within the same TAD. To do this we developed a TAD randomisation algorithm to generate sets of "random TADs" to act as null distributions. We found that while pairs of paralogous genes are enriched in TADs overall, they are largely depleted in TADs with CCCTC-binding factor (CTCF) ChIP-seq peaks at both boundaries. By assessing gene constraint as a proxy for functional importance we found that genes which singly occupy a TAD have greater functional importance than genes which share a TAD, and these genes are enriched for developmental processes. We found little evidence that pairs of genes in CTCF bound TADs are more likely to be co-expressed or share functional annotations than can be explained by their linear proximity alone. CONCLUSIONS: These results suggest that algorithmically defined TADs consist of two functionally different groups, those which are bound by CTCF and those which are not. We detected no association between genes sharing the same CTCF TADs and increased co-expression or functional similarity, other than that explained by linear genome proximity. We do, however, find that functionally important genes are more likely to fall within a TAD on their own suggesting that TADs play an important role in the insulation of these genes.


Asunto(s)
Cromatina , Genoma , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Cromatina/genética , Ensamble y Desensamble de Cromatina , Secuenciación de Inmunoprecipitación de Cromatina
15.
Nat Microbiol ; 7(1): 97-107, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34972825

RESUMEN

Global and national surveillance of SARS-CoV-2 epidemiology is mostly based on targeted schemes focused on testing individuals with symptoms. These tested groups are often unrepresentative of the wider population and exhibit test positivity rates that are biased upwards compared with the true population prevalence. Such data are routinely used to infer infection prevalence and the effective reproduction number, Rt, which affects public health policy. Here, we describe a causal framework that provides debiased fine-scale spatiotemporal estimates by combining targeted test counts with data from a randomized surveillance study in the United Kingdom called REACT. Our probabilistic model includes a bias parameter that captures the increased probability of an infected individual being tested, relative to a non-infected individual, and transforms observed test counts to debiased estimates of the true underlying local prevalence and Rt. We validated our approach on held-out REACT data over a 7-month period. Furthermore, our local estimates of Rt are indicative of 1-week- and 2-week-ahead changes in SARS-CoV-2-positive case numbers. We also observed increases in estimated local prevalence and Rt that reflect the spread of the Alpha and Delta variants. Our results illustrate how randomized surveys can augment targeted testing to improve statistical accuracy in monitoring the spread of emerging and ongoing infectious disease.


Asunto(s)
COVID-19/epidemiología , Modelos Estadísticos , SARS-CoV-2/aislamiento & purificación , Número Básico de Reproducción , Sesgo , COVID-19/diagnóstico , COVID-19/transmisión , Prueba de COVID-19/estadística & datos numéricos , Predicción , Humanos , Prevalencia , Reproducibilidad de los Resultados , SARS-CoV-2/genética , Análisis Espacio-Temporal , Reino Unido/epidemiología
16.
BMC Med Res Methodol ; 21(1): 250, 2021 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-34773974

RESUMEN

BACKGROUND: Novartis and the University of Oxford's Big Data Institute (BDI) have established a research alliance with the aim to improve health care and drug development by making it more efficient and targeted. Using a combination of the latest statistical machine learning technology with an innovative IT platform developed to manage large volumes of anonymised data from numerous data sources and types we plan to identify novel patterns with clinical relevance which cannot be detected by humans alone to identify phenotypes and early predictors of patient disease activity and progression. METHOD: The collaboration focuses on highly complex autoimmune diseases and develops a computational framework to assemble a research-ready dataset across numerous modalities. For the Multiple Sclerosis (MS) project, the collaboration has anonymised and integrated phase II to phase IV clinical and imaging trial data from ≈35,000 patients across all clinical phenotypes and collected in more than 2200 centres worldwide. For the "IL-17" project, the collaboration has anonymised and integrated clinical and imaging data from over 30 phase II and III Cosentyx clinical trials including more than 15,000 patients, suffering from four autoimmune disorders (Psoriasis, Axial Spondyloarthritis, Psoriatic arthritis (PsA) and Rheumatoid arthritis (RA)). RESULTS: A fundamental component of successful data analysis and the collaborative development of novel machine learning methods on these rich data sets has been the construction of a research informatics framework that can capture the data at regular intervals where images could be anonymised and integrated with the de-identified clinical data, quality controlled and compiled into a research-ready relational database which would then be available to multi-disciplinary analysts. The collaborative development from a group of software developers, data wranglers, statisticians, clinicians, and domain scientists across both organisations has been key. This framework is innovative, as it facilitates collaborative data management and makes a complicated clinical trial data set from a pharmaceutical company available to academic researchers who become associated with the project. CONCLUSIONS: An informatics framework has been developed to capture clinical trial data into a pipeline of anonymisation, quality control, data exploration, and subsequent integration into a database. Establishing this framework has been integral to the development of analytical tools.


Asunto(s)
Ciencia de los Datos , Difusión de la Información , Bases de Datos Factuales , Desarrollo de Medicamentos , Humanos , Proyectos de Investigación
17.
medRxiv ; 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34790983

RESUMEN

BACKGROUND: Ethnically diverse and socio-economically deprived communities have been differentially affected by the COVID-19 pandemic in the UK. METHOD: Using a multilevel regression model we assess the time-varying association between SARS-CoV-2 infections and areal level deprivation and ethnicity. We separately consider weekly test positivity rate (number of positive tests over the total number of tests) and estimated unbiased prevalence (proportion of individuals in the population who would test positive) at the Lower Tier Local Authority (LTLA) level. The model also adjusts for age, urbanicity, vaccine uptake and spatio-temporal correlation structure. FINDINGS: Comparing the least deprived and predominantly White areas with most deprived and predominantly non-White areas over the whole study period, the weekly positivity rate increases by 13% from 297% to 335%. Similarly, prevalence increases by 10% from 037% to 041%. Deprivation has a stronger effect until October 2020, while the effect of ethnicity becomes slightly more pronounced at the peak of the second wave and then again in May-June 2021. Not all BAME groups were equally affected: in the second wave of the pandemic, LTLAs with large South Asian populations were the most affected, whereas areas with large Black populations did not show increased values for either outcome during the entire period under analysis. INTERPRETATION: At the area level, IMD and BAME% are both associated with an increased COVID-19 burden in terms of prevalence (disease spread) and test positivity (disease monitoring), and the strength of association varies over the course of the pandemic. The consistency of results across the two outcome measures suggests that community level characteristics such as deprivation and ethnicity have a differential impact on disease exposure or susceptibility rather than testing access and habits. FUNDINGS: EPSRC, MRC, The Alan Turing Institute, NIH, UKHSA, DHSC, NIHR.

18.
Dis Model Mech ; 14(10)2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34477842

RESUMEN

Down syndrome (DS), trisomy 21, results in many complex phenotypes including cognitive deficits, heart defects and craniofacial alterations. Phenotypes arise from an extra copy of human chromosome 21 (Hsa21) genes. However, these dosage-sensitive causative genes remain unknown. Animal models enable identification of genes and pathological mechanisms. The Dp1Tyb mouse model of DS has an extra copy of 63% of Hsa21-orthologous mouse genes. In order to establish whether this model recapitulates DS phenotypes, we comprehensively phenotyped Dp1Tyb mice using 28 tests of different physiological systems and found that 468 out of 1800 parameters were significantly altered. We show that Dp1Tyb mice have wide-ranging DS-like phenotypes, including aberrant erythropoiesis and megakaryopoiesis, reduced bone density, craniofacial changes, altered cardiac function, a pre-diabetic state, and deficits in memory, locomotion, hearing and sleep. Thus, Dp1Tyb mice are an excellent model for investigating complex DS phenotype-genotype relationships for this common disorder.


Asunto(s)
Síndrome de Down/patología , Péptidos beta-Amiloides/metabolismo , Anemia/complicaciones , Animales , Desarrollo Óseo , Modelos Animales de Enfermedad , Síndrome de Down/genética , Síndrome de Down/fisiopatología , Eritropoyesis , Potenciales Evocados Auditivos del Tronco Encefálico , Regulación de la Expresión Génica , Genes Duplicados , Audición , Pruebas de Función Cardíaca , Hipocampo/patología , Locomoción , Memoria/fisiología , Ratones Endogámicos C57BL , Otitis Media/complicaciones , Otitis Media/patología , Otitis Media/fisiopatología , Fenotipo , Estado Prediabético/complicaciones , Estado Prediabético/patología , Estado Prediabético/fisiopatología , Respiración , Sueño/fisiología , Bazo/patología , Esplenomegalia/complicaciones
20.
Development ; 148(18)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33574040

RESUMEN

Advanced 3D imaging modalities, such as micro-computed tomography (micro-CT), have been incorporated into the high-throughput embryo pipeline of the International Mouse Phenotyping Consortium (IMPC). This project generates large volumes of raw data that cannot be immediately exploited without significant resources of personnel and expertise. Thus, rapid automated annotation is crucial to ensure that 3D imaging data can be integrated with other multi-dimensional phenotyping data. We present an automated computational mouse embryo phenotyping pipeline that harnesses the large amount of wild-type control data available in the IMPC embryo pipeline in order to address issues of low mutant sample number as well as incomplete penetrance and variable expressivity. We also investigate the effect of developmental substage on automated phenotyping results. Designed primarily for developmental biologists, our software performs image pre-processing, registration, statistical analysis and segmentation of embryo images. We also present a novel anatomical E14.5 embryo atlas average and, using it with LAMA, show that we can uncover known and novel dysmorphology from two IMPC knockout lines.


Asunto(s)
Embrión de Mamíferos/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Animales , Femenino , Imagenología Tridimensional/métodos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados/fisiología , Fenotipo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...