Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 13(9)2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37759748

RESUMEN

(1) Background: Recently, we found that adenosine A2A receptor (A2AR) stimulation results in an increase in STEP phosphatase activity. In order to delve into the mechanism through which A2AR stimulation induced STEP activation, we investigated the involvement of mGlu5R since it is well documented that A2AR and mGlu5R physically and functionally interact in several brain areas. (2) Methods: In a neuroblastoma cell line (SH-SY5Y) and in mouse hippocampal slices, we evaluated the enzymatic activity of STEP by using a para-nitrophenyl phosphate colorimetric assay. A co-immunoprecipitation assay and a Western blot analysis were used to evaluate STEP/mGlu5R binding. (3) Results: We found that the A2AR-dependent activation of STEP was mediated by the mGlu5R. Indeed, the A2AR agonist CGS 21680 significantly increased STEP activity, and this effect was prevented not only by the A2AR antagonist ZM 241385, as expected, but also by the mGlu5R antagonist MPEP. In addition, we found that mGlu5R agonist DHPG-induced STEP activation was reversed not only by the mGlu5R antagonist MPEP but also by ZM 241385. Finally, via co-immunoprecipitation experiments, we found that mGlu5R and STEP physically interact when both receptors are activated (4) Conclusions: These results demonstrated a close functional interaction between mGlu5 and A2A receptors in the modulation of STEP activity.


Asunto(s)
Neuroblastoma , Receptor de Adenosina A2A , Humanos , Ratones , Animales , Receptor de Adenosina A2A/metabolismo , Receptor del Glutamato Metabotropico 5/metabolismo , Adenosina/farmacología , Línea Celular , Hipocampo/metabolismo
2.
Cells ; 11(17)2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-36078064

RESUMEN

Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1's proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.


Asunto(s)
Edema Encefálico , Quistes , Astrocitos/metabolismo , Edema Encefálico/patología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cloruros/metabolismo , Quistes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias , Humanos , Proteínas de la Membrana/metabolismo , Proteómica , Canales Aniónicos Dependientes del Voltaje/metabolismo , Agua/metabolismo
3.
Front Pharmacol ; 12: 647742, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33953681

RESUMEN

The STriatal-Enriched protein tyrosine phosphatase STEP is a brain-specific tyrosine phosphatase that plays a pivotal role in the mechanisms of learning and memory, and it has been demonstrated to be involved in several neuropsychiatric diseases. Recently, we found a functional interaction between STEP and adenosine A2A receptor (A2AR), a subtype of the adenosine receptor family widely expressed in the central nervous system, where it regulates motor behavior and cognition, and plays a role in cell survival and neurodegeneration. Specifically, we demonstrated the involvement of STEP in A2AR-mediated cocaine effects in the striatum and, more recently, we found that in the rat striatum and hippocampus, as well as in a neuroblastoma cell line, the overexpression of the A2AR, or its stimulation, results in an increase in STEP activity. In the present article we will discuss the functional implication of this interaction, trying to examine the possible mechanisms involved in this relation between STEP and A2ARs.

4.
Transl Psychiatry ; 11(1): 112, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547274

RESUMEN

In fragile X syndrome (FXS) the lack of the fragile X mental retardation protein (FMRP) leads to exacerbated signaling through the metabotropic glutamate receptors 5 (mGlu5Rs). The adenosine A2A receptors (A2ARs), modulators of neuronal damage, could play a role in FXS. A synaptic colocalization and a strong permissive interaction between A2A and mGlu5 receptors in the hippocampus have been previously reported, suggesting that blocking A2ARs might normalize the mGlu5R-mediated effects of FXS. To study the cross-talk between A2A and mGlu5 receptors in the absence of FMRP, we performed extracellular electrophysiology experiments in hippocampal slices of Fmr1 KO mouse. The depression of field excitatory postsynaptic potential (fEPSPs) slope induced by the mGlu5R agonist CHPG was completely blocked by the A2AR antagonist ZM241385 and strongly potentiated by the A2AR agonist CGS21680, suggesting that the functional synergistic coupling between the two receptors could be increased in FXS. To verify if chronic A2AR blockade could reverse the FXS phenotypes, we treated the Fmr1 KO mice with istradefylline, an A2AR antagonist. We found that hippocampal DHPG-induced long-term depression (LTD), which is abnormally increased in FXS mice, was restored to the WT level. Furthermore, istradefylline corrected aberrant dendritic spine density, specific behavioral alterations, and overactive mTOR, TrkB, and STEP signaling in Fmr1 KO mice. Finally, we identified A2AR mRNA as a target of FMRP. Our results show that the pharmacological blockade of A2ARs partially restores some of the phenotypes of Fmr1 KO mice, both by reducing mGlu5R functioning and by acting on other A2AR-related downstream targets.


Asunto(s)
Síndrome del Cromosoma X Frágil , Receptor de Adenosina A2A , Adenosina , Animales , Cognición , Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/tratamiento farmacológico , Síndrome del Cromosoma X Frágil/genética , Hipocampo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Adenosina A2A/genética
5.
Cells ; 9(6)2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521795

RESUMEN

Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.


Asunto(s)
Astrocitos/metabolismo , Comunicación Celular , Conexina 43/metabolismo , Quistes/metabolismo , Quistes/patología , Uniones Comunicantes/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Proteínas de la Membrana/metabolismo , Línea Celular Tumoral , Citosol/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Modelos Biológicos , Mutación/genética , Fosforilación , Estabilidad Proteica , Transporte de Proteínas
6.
Neuroscience ; 433: 36-41, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32156551

RESUMEN

Alzheimer's disease (AD) is the most prevalent type of dementia affecting older people. The identification of biomarkers is increasingly important and would be crucial for future therapy. Here, we demonstrated that in AD erythrocytes: (i) the anion transporter band3 is highly phosphorylated; (ii) the lyn kinase is phosphorylated and activated; (iii) the tyrosine phosphatase activity is downregulated, with a significant inverse correlation between band3 phosphorylation and disease progression, as revealed by Mini Mental State Examination score. Finally, we showed that in normal erythrocytes, treated in vitro with Aß1-42 peptide, both band3 phosphorylation and lyn activation occurs. These results suggest that modulation of tyrosine phosphorylation signaling may be evaluated as a potential peripheral marker in AD.


Asunto(s)
Enfermedad de Alzheimer , Anciano , Anciano de 80 o más Años , Eritrocitos/metabolismo , Humanos , Fosforilación , Transducción de Señal , Tirosina/metabolismo
7.
J Neurochem ; 152(3): 284-298, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31520531

RESUMEN

We recently demonstrated that a tonic activation of adenosine A2A receptors (A2A Rs) is required for cocaine-induced synaptic depression and increase in the activity of STriatal-Enriched protein tyrosine Phosphatase (STEP). In this study, we elaborated on the relationship between A2A R and STEP using genetic, pharmacological, and cellular tools. We found that the activities of protein tyrosine phosphatases (PTPs), and in particular of STEP, are significantly increased in the striatum and hippocampus of a transgenic rat strain over-expressing the neuronal A2A R (NSEA2A ) with respect to wild-type (WT) rats. Moreover the selective A2A R agonist 4-[2-[[6-Amino-9-(N-ethyl-ß-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride up-regulates PTPs and STEP activities in WT but not in NSEA2A rats, while the selective A2A R antagonist 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol restores the tyrosine phosphatase activities in NSEA2A , having no effects in WT rats. In addition, while cocaine induced the activation of PTP and STEP in WT rats, it failed to increase phosphatase activity in NSEA2A rats. A2A Rs modulate STEP activity also in the SH-SY5Y neuroblastoma cell line, where a calcium-dependent calcineurin/PP1 pathway was found to play a major role. In summary, the present study identified a novel interaction between A2A R and STEP that could have important clinical implications, since STEP has emerged as key regulator of signaling pathways involved in neurodegenerative and neuropsychiatric diseases and A2A Rs are considered a promising target for the development of therapeutic strategies for different diseases of the central nervous system. Read the Editorial Highlight for this article on page 270.


Asunto(s)
Neuronas/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptor de Adenosina A2A/metabolismo , Animales , Línea Celular , Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Femenino , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas
8.
Mol Neurobiol ; 56(12): 8237-8254, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31209783

RESUMEN

Megalencephalic leukoencephalopathy with subcortical cysts protein-1 (MLC1) is a membrane protein expressed by perivascular astrocytes. MLC1 mutations cause MLC, an incurable leukodystrophy characterized by macrocephaly, brain edema, cysts, myelin vacuolation, and astrocytosis, leading to cognitive/motor impairment and epilepsy. Although its function is unknown, MLC1 favors regulatory volume decrease after astrocyte osmotic swelling and down-regulates intracellular signaling pathways controlling astrocyte activation and proliferation. By combining analysis of human brain tissues with in vitro experiments, here we investigated MLC1 role in astrocyte activation during neuroinflammation, a pathological condition exacerbating patient symptoms. MLC1 upregulation was observed in brain tissues from multiple sclerosis, Alzheimer's, and Creutzfeld-Jacob disease, all pathologies characterized by strong astrocytosis and release of inflammatory cytokines, particularly IL-1ß. Using astrocytoma lines overexpressing wild-type (WT) or mutated MLC1 and astrocytes from control and Mlc1 knock-out (KO) mice, we found that IL-1ß stimulated WT-MLC1 plasma membrane expression in astrocytoma cells and control primary astrocytes. In astrocytoma, WT-MLC1 inhibited the activation of IL-1ß-induced inflammatory signals (pERK, pNF-kB) that, conversely, were constitutively activated in mutant expressing cells or abnormally upregulated in KO astrocytes. WT-MLC1+ cells also expressed reduced levels of the astrogliosis marker pSTAT3. We then monitored MLC1 expression timing in a demyelinating/remyelinating murine cerebellar organotypic culture model where, after the demyelination and release of inflammatory cytokines, recovery processes occur, revealing MLC1 upregulation in these latter phases. Altogether, these findings suggest that by modulating specific pathways, MLC1 contributes to restore astrocyte homeostasis after inflammation, providing the opportunity to identify drug target molecules to slow down disease progression.


Asunto(s)
Astrocitos/patología , Inflamación/patología , Proteínas de la Membrana/metabolismo , Transducción de Señal , Adulto , Anciano , Enfermedad de Alzheimer/patología , Animales , Astrocitos/metabolismo , Membrana Celular/metabolismo , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Interleucina-1beta/metabolismo , Masculino , Proteínas de la Membrana/deficiencia , Ratones Noqueados , Persona de Mediana Edad , Modelos Biológicos , Mutación/genética , FN-kappa B/metabolismo , Fosforilación , Ratas , Regulación hacia Arriba
9.
Neural Plast ; 2018: 2430193, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154836

RESUMEN

Degeneration of cortical and spinal motor neurons is the typical feature of amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disease for which a pathogenetic role for the Cu/Zn superoxide dismutase (SOD1) has been demonstrated. Mice overexpressing a mutated form of the SOD1 gene (SOD1G93A) develop a syndrome that closely resembles the human disease. The SOD1 mutations confer to this enzyme a "gain-of-function," leading to increased production of reactive oxygen species. Several oxidants induce tyrosine phosphorylation through direct stimulation of kinases and/or phosphatases. In this study, we analyzed the activities of src and fyn tyrosine kinases and of protein tyrosine phosphatases in synaptosomal fractions prepared from the motor cortex and spinal cord of transgenic mice expressing SOD1G93A. We found that (i) protein phosphotyrosine level is increased, (ii) src and fyn activities are upregulated, and (iii) the activity of tyrosine phosphatases, including the striatal-enriched tyrosine phosphatase (STEP), is significantly decreased. Moreover, the NMDA receptor (NMDAR) subunit GluN2B tyrosine phosphorylation was upregulated in SOD1G93A. Tyrosine phosphorylation of GluN2B subunits regulates the NMDAR function and the recruitment of downstream signaling molecules. Indeed, we found that proline-rich tyrosine kinase 2 (Pyk2) and ERK1/2 kinase are upregulated in SOD1G93A mice. These results point out an involvement of tyrosine kinases and phosphatases in the pathogenesis of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Modelos Animales de Enfermedad , Corteza Motora/metabolismo , Fosfotirosina/metabolismo , Médula Espinal/metabolismo , Superóxido Dismutasa/biosíntesis , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Motora/patología , Transducción de Señal/fisiología , Médula Espinal/patología , Superóxido Dismutasa/genética
10.
Cell Mol Neurobiol ; 38(6): 1315-1320, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29846839

RESUMEN

Curcumin is one of the major compounds contained in turmeric, the powdered rhizome of Curcuma longa. Results obtained in various experimental models indicate that curcumin has the potential to treat a large variety of neuronal diseases. Excitotoxicity, the toxicity due to pathological glutamate receptors stimulation, has been considered to be involved in several ocular pathologies including ischemia, glaucoma, and diabetic retinopathy. The NMDA receptor (NMDAR), a heteromeric ligand-gated ion channel, is composed of GluN1 and GluN2 subunits. There are four GluN2 subunits (GluN2A-D), which are major determinants of the functional properties of NMDARs. It is widely accepted that GluN2B has a pivotal role in excitotoxicity while the role of GluN2A remains controversial. We previously demonstrated that curcumin is neuroprotective against NMDA-induced excitotoxicity with a mechanism involving an increase of GluN2A subunit activity. In this paper, we investigate the mechanisms involved in curcumin-induced GluN2A increase in retinal cultures. Our results show that curcumin treatment activated CaMKII with a time-course that paralleled those of GluN2A increase. Moreover, KN-93, a CaMKII inhibitor, was able to block the effect of curcumin on GluN2A expression. Finally, in our experimental model, curcumin reduced ser/thr phosphatases activity. Using okadaic acid, a specific PP1 and PP2A blocker, we observed an increase in GluN2A levels in cultures. The ability of okadaic acid to mimic the effect of curcumin on GluN2A expression suggests that curcumin might regulate GluN2A expression through a phosphatase-dependent mechanism. In conclusion, our findings indicate curcumin modulation of CaMKII and/or ser/thr phosphatases activities as a mechanism involved in GluN2A expression and neuroprotection against excitotoxicity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/efectos de los fármacos , Curcumina/farmacología , Fosfoproteínas Fosfatasas/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/efectos de los fármacos , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Transducción de Señal/efectos de los fármacos
11.
Metabolism ; 71: 64-69, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28521879

RESUMEN

OBJECTIVE: Advanced glycation end-products (AGEs) constitute a highly heterogeneous family of compounds, relevant in the pathogenesis of diabetic complications, which could represent efficient biomarkers of disease progression and drug response. Unfortunately, due to their chemical heterogeneity, no method has been validated to faithfully monitor their levels in the course of the disease. In this study, we refine a procedure to quantitatively analyze fluorescent AGEs (fAGEs), a subset considered remarkably representative of the entire AGE family, and measure them in in vitro glycated BSA (gBSA) and in plasma and vitreous of diabetic rats, for testing its use to possibly quantify circulating AGEs in patients, as markers of metabolic control. METHODS: fAGE levels were evaluated by spectrofluorimetric analysis in in vitro and in vivo experimental models. BSA was glycated in vitro with increasing D-glucose concentrations for a fixed time or with a fixed D-glucose concentration for increasing time. In in vivo experiments, streptozotocin-induced diabetic rats were studied at 1, 3, 6 and 12weeks to analyze plasma and vitreous. To confirm the presence of AGEs in our models, non-diabetic rat retinal explants were exposed to high glucose (HG), to reproduce short-term effects, or in vitro gBSA, to reproduce long-term effects of elevated glucose concentrations. Rat retinal explants and diabetic retinal tissues were evaluated for the receptor for advanced glycation end-product (RAGE) by Western blot analysis. RESULTS: In in vitro experiments, fluorescence emission showed glucose concentration- and time-dependent increase of fAGEs in gBSA (p≤0.05). In streptozotocin-induced diabetic rats, fAGE in plasma and vitrei showed an increase at 6 (p≤0.005) and 12 (p≤0.05) weeks of diabetes, with respect to control. RAGE was time-dependently upregulated in retinas incubated with gBSA, but not with HG, and in diabetic retinal tissue, substantiating exposure to AGEs. CONCLUSIONS: Applying the proposed technique, we could show that fAGEs levels increase with glucose concentration and time of exposure in vitro. Furthermore, in diabetic rats, it showed that circulating fAGEs are similarly upregulated as those in vitreous, suggesting a correlation between circulating and tissue AGEs. These results support the use of this method as a simple and reliable test to measure circulating fAGEs and monitor diabetes progression.


Asunto(s)
Productos Finales de Glicación Avanzada/sangre , Espectrometría de Fluorescencia/métodos , Animales , Diabetes Mellitus Experimental/sangre , Retinopatía Diabética/patología , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes , Masculino , Ratas , Ratas Sprague-Dawley , Retina/química , Retina/metabolismo , Albúmina Sérica Bovina/análisis
12.
Hum Mol Genet ; 25(8): 1543-58, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26908604

RESUMEN

Mutations in the MLC1 gene, which encodes a protein expressed in brain astrocytes, are the leading cause of MLC, a rare leukodystrophy characterized by macrocephaly, brain edema, subcortical cysts, myelin and astrocyte vacuolation. Although recent studies indicate that MLC1 protein is implicated in the regulation of cell volume changes, the exact role of MLC1 in brain physiology and in the pathogenesis of MLC disease remains to be clarified. In preliminary experiments, we observed that MLC1 was poorly expressed in highly proliferating astrocytoma cells when compared with primary astrocytes, and that modulation of MLC1 expression influenced astrocyte growth. Because volume changes are key events in cell proliferation and during brain development MLC1 expression is inversely correlated to astrocyte progenitor proliferation levels, we investigated the possible role for MLC1 in the control of astrocyte proliferation. We found that overexpression of wild type but not mutant MLC1 in human astrocytoma cells hampered cell growth by favoring epidermal growth factor receptor (EGFR) degradation and by inhibiting EGF-induced Ca(+) entry, ERK1/2 and PLCγ1 activation, and calcium-activated KCa3.1 potassium channel function, all molecular pathways involved in astrocyte proliferation stimulation. Interestingly, MLC1 did not influence AKT, an EGFR-stimulated kinase involved in cell survival. Moreover, EGFR expression was higher in macrophages derived from MLC patients than from healthy individuals. Since reactive astrocytes proliferate and re-express EGFR in response to different pathological stimuli, the present findings provide new information on MLC pathogenesis and unravel an important role for MLC1 in other brain pathological conditions where astrocyte activation occurs.


Asunto(s)
Astrocitos/citología , Quistes/patología , Receptores ErbB/metabolismo , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/patología , Proteínas de la Membrana/metabolismo , Animales , Astrocitos/metabolismo , Astrocitoma/genética , Astrocitoma/patología , Línea Celular Tumoral , Proliferación Celular , Quistes/genética , Regulación de la Expresión Génica , Enfermedades Desmielinizantes del Sistema Nervioso Central Hereditarias/genética , Humanos , Proteínas de la Membrana/genética , Mutación , Ratas , Transducción de Señal
13.
Exp Eye Res ; 145: 158-163, 2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26607807

RESUMEN

The effects of the anti-Vascular Endothelial Growth Factor (VEGF) drugs ranibizumab and aflibercept were studied in Müller glia in primary mixed cultures from rat neonatal retina. Treatment with both agents induced activation of Müller glia, demonstrated by increased levels of Glial Fibrillary Acidic Protein. In addition, phosphorylated Extracellular-Regulated Kinase 1/2 (ERK 1/2) showed enhanced immunoreactivity in activated Müller glia. Treatment with aflibercept induced an increase in K(+) channel (Kir) 4.1 levels and both drugs upregulated Aquaporin 4 (AQP4) in activated Müller glia. The results show that VEGF-antagonizing drugs influence the homeostasis of Müller cells in primary retinal cultures, inducing an activated phenotype. Upregulation of Kir4.1 and AQP4 suggests that Müller glia activation following anti-VEGF drugs may not depict a detrimental gliotic reaction. Indeed, it could represent one of the mechanisms able to contribute to the therapeutic effects of these drugs, particularly in the presence of macular edema.


Asunto(s)
Células Ependimogliales/metabolismo , Proteínas del Ojo/metabolismo , Degeneración Macular/tratamiento farmacológico , Neuroglía/metabolismo , Ranibizumab/farmacología , Proteínas Recombinantes de Fusión/farmacología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/farmacología , Animales , Animales Recién Nacidos , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Electroforesis , Células Ependimogliales/patología , Degeneración Macular/metabolismo , Degeneración Macular/patología , Neuroglía/patología , Ratas , Ratas Wistar , Receptores de Factores de Crecimiento Endotelial Vascular , Regulación hacia Arriba
14.
Front Behav Neurosci ; 9: 86, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25926782

RESUMEN

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG binding protein 2 gene (MECP2) cause more than 95% of classic cases, and currently there is no cure for this devastating disorder. Recently we have demonstrated that specific behavioral and brain molecular alterations can be rescued in MeCP2-308 male mice, a RTT mouse model, by pharmacological stimulation of the brain serotonin receptor 7 (5-HT7R). This member of the serotonin receptor family-crucially involved in the regulation of brain structural plasticity and cognitive processes-can be stimulated by systemic repeated treatment with LP-211, a brain-penetrant selective 5-HT7R agonist. The present study extends previous findings by demonstrating that the LP-211 treatment (0.25 mg/kg, once per day for 7 days) rescues RTT-related phenotypic alterations, motor coordination (Dowel test), spatial reference memory (Barnes maze test) and synaptic plasticity (hippocampal long-term-potentiation) in MeCP2-308 heterozygous female mice, the genetic and hormonal milieu that resembles that of RTT patients. LP-211 also restores the activation of the ribosomal protein (rp) S6, the downstream target of mTOR and S6 kinase, in the hippocampus of RTT female mice. Notably, the beneficial effects on neurobehavioral and molecular parameters of a seven-day long treatment with LP-211 were evident up to 2 months after the last injection, thus suggesting long-lasting effects on RTT-related impairments. Taken together with our previous study, these results provide compelling preclinical evidence of the potential therapeutic value for RTT of a pharmacological approach targeting the brain 5-HT7R.

15.
Biomed Res Int ; 2015: 364924, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25688355

RESUMEN

Experimental models of diabetic retinopathy (DR) have had a crucial role in the comprehension of the pathophysiology of the disease and the identification of new therapeutic strategies. Most of these studies have been conducted in vivo, in animal models. However, a significant contribution has also been provided by studies on retinal cultures, especially regarding the effects of the potentially toxic components of the diabetic milieu on retinal cell homeostasis, the characterization of the mechanisms on the basis of retinal damage, and the identification of potentially protective molecules. In this review, we highlight the contribution given by primary retinal cultures to the study of DR, focusing on early neuroglial impairment. We also speculate on possible themes into which studies based on retinal cell cultures could provide deeper insight.


Asunto(s)
Células Cultivadas , Retinopatía Diabética , Modelos Biológicos , Animales , Humanos , Ratones , Conejos , Ratas
16.
Exp Eye Res ; 128: 109-13, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25150087

RESUMEN

Exposure to Stimulating Environments (SE) during development may improve neuroplasticity in central nervous system, protect against neurotoxic damage, and promote neuronal recovery in adult life. While biochemical mechanisms of SE-promoted neuronal plasticity are well known in the brain, much less is known on the signaling cascade governing plasticity and neuroprotection in the retina. In order to investigate if in the retina signaling molecules involved in neuronal plasticity are affected by SE, neonatal CD-1 mice were exposed to moderate corticosterone levels (NC), supplemented through maternal milk during the first postnatal week, or to environmental enrichment (EE) conditions (physical and social stimuli) from early adolescence. Our results showed that both NC and EE increased the phosphorylation level of Extracellularly Regulated Kinase 1/2 (ERK1/2) and cAMP response element-binding protein (CREB) in the adult retinal tissue. Furthermore, we observed that activated ERK1/2 was restricted to Müller cells, while pCREB was mostly present in the nuclei of retinal neurons. Neither NC, nor EE modified the expression of GFAP, a marker of Müller cells activation. In conclusion our results indicate that both NC and EE activate ERK1/2 and CREB in the retina and provide a biochemical background for the neuroprotective activity exerted by SE against retinal damage. Furthermore, they support the role of Müller glia as a key cell determinant of retinal neuroplasticity.


Asunto(s)
Antiinflamatorios/farmacología , Proteína de Unión a CREB/metabolismo , Corticosterona/farmacología , Exposición a Riesgos Ambientales , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Retina/efectos de los fármacos , Animales , Animales Recién Nacidos , Electroforesis en Gel de Poliacrilamida , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Masculino , Ratones , Plasticidad Neuronal/efectos de los fármacos , Fosforilación , Embarazo , Retina/metabolismo , Neuronas Retinianas
17.
Exp Eye Res ; 125: 20-9, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24877742

RESUMEN

Müller cell activation is an early finding in diabetic retinopathy (DR), but its physiopathologic role in the disease is still unclear, especially in the early phases. We investigated on Müller glial activation in primary rat retinal cultures, exposed to High Glucose (HG), and in retinas from streptozotocin (stz)-induced diabetic rats. First of all, we checked if the presence of Müller glia influenced HG neurotoxicity. In mixed glial/neuronal retinal cultures, a single HG administration (sHG) for 48 h induced activation of Müller glia, in absence of neuronal damage. In contrast, in pure neuronal cultures, a marked neurotoxic effect was detected, suggesting that in this cell model Müller glia protect neurons from HG neurotoxicity. To better mimic the diabetic milieu, where retinal cells are constantly bathed in hyperglycemic fluid, and to further characterize astrocytic neuroprotective ability, mixed retinal cultures were exposed to repeated daily replacement of HG (rHG). In this paradigm, starting from 48 h, increased apoptosis and synaptic loss were observed, even in the presence of Müller cells. Phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), whose activation triggers a prosurvival pathway, was increased by sHG, while it was down-regulated by rHG, suggesting that ERK1/2 activation is involved in neuroprotection. Consistently, in presence of ERK1/2 inhibitor PD98059, sHG exerted a proapoptotic effect also in glial/neuronal retinal cultures. In line with the in vitro data, early changes in diabetic retinas from stz-injected rats included Müller cell activation and increased pERK1/2 levels, but no signs of neuronal damage. These results suggest that, in the early phases of DR, Müller glial activation does not contribute to neurodegeneration, but may indeed have a neuroprotective activity against HG-induced neurotoxicity through a mechanism involving pERK1/2.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética/fisiopatología , Células Ependimogliales/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Retina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Retinopatía Diabética/inducido químicamente , Células Ependimogliales/efectos de los fármacos , Glucosa/toxicidad , Masculino , Ratas , Ratas Sprague-Dawley
18.
Int J Mol Sci ; 15(4): 6286-97, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24736780

RESUMEN

In recent years, citicoline has been the object of remarkable interest as a possible neuroprotectant. The aim of this study was to investigate if citicoline affected cell survival in primary retinal cultures and if it exerted neuroprotective activity in conditions modeling retinal neurodegeneration. Primary retinal cultures, obtained from rat embryos, were first treated with increasing concentrations of citicoline (up to 1000 µM) and analyzed in terms of apoptosis and caspase activation and characterized by immunocytochemistry to identify neuronal and glial cells. Subsequently, excitotoxic concentration of glutamate or High Glucose-containing cell culture medium (HG) was administered as well-known conditions modeling neurodegeneration. Glutamate or HG treatments were performed in the presence or not of citicoline. Neuronal degeneration was evaluated in terms of apoptosis and loss of synapses. The results showed that citicoline did not cause any damage to the retinal neuroglial population up to 1000 µM. At the concentration of 100 µM, it was able to counteract neuronal cell damage both in glutamate- and HG-treated retinal cultures by decreasing proapoptotic effects and contrasting synapse loss. These data confirm that citicoline can efficiently exert a neuroprotective activity. In addition, the results suggest that primary retinal cultures, under conditions inducing neurodegeneration, may represent a useful system to investigate citicoline neuroprotective mechanisms.


Asunto(s)
Citidina Difosfato Colina/farmacología , Fármacos Neuroprotectores/farmacología , Retina/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Glucosa/toxicidad , Ácido Glutámico/toxicidad , Modelos Biológicos , Ratas , Retina/citología
19.
Neuropsychopharmacology ; 39(3): 569-78, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23989619

RESUMEN

The striatum is a brain area implicated in the pharmacological action of drugs of abuse. Adenosine A2A receptors (A2ARs) are highly expressed in the striatum and mediate, at least in part, cocaine-induced psychomotor effects in vivo. Here we studied the synaptic mechanisms implicated in the pharmacological action of cocaine in the striatum and investigated the influence of A2ARs. We found that synaptic transmission was depressed in corticostriatal slices after perfusion with cocaine (10 µM). This effect was reduced by the A2AR antagonist ZM241385 and almost abolished in striatal A2AR-knockout mice (mice lacking A2ARs in striatal neurons, stA2ARKO). The effect of cocaine on synaptic transmission was also prevented by the protein tyrosine phosphatases (PTPs) inhibitor sodium orthovanadate (Na3VO4). In synaptosomes prepared from striatal slices, we found that the activity of striatal-enriched protein tyrosine phosphatase (STEP) was upregulated by cocaine, prevented by ZM241385, and absent in synaptosomes from stA2ARKO. The role played by STEP in cocaine modulation of synaptic transmission was investigated in whole-cell voltage clamp recordings from medium spiny neurons of the striatum. We found that TAT-STEP, a peptide that renders STEP enzymatically inactive, prevented cocaine-induced reduction in AMPA- and NMDA-mediated excitatory post-synaptic currents, whereas the control peptide, TAT-myc, had no effect. These results demonstrate that striatal A2ARs modulate cocaine-induced synaptic depression in the striatum and highlight the potential role of PTPs and specifically STEP in the effects of cocaine.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptor de Adenosina A2A/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Corteza Cerebral/citología , Cuerpo Estriado/citología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Vías Nerviosas/fisiología , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Receptor de Adenosina A2A/genética , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Vanadatos/farmacología
20.
Biochim Biophys Acta ; 1833(1): 110-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23103755

RESUMEN

Phosphorylation and nitration of protein tyrosine residues are thought to play a role in signaling pathways at the nerve terminal and to affect functional properties of proteins involved in the synaptic vesicle (SV) exo-endocytotic cycle. We previously demonstrated that the tyrosine residues in the C-terminal domain of the SV protein Synaptophysin (SYP) are targets of peroxynitrite (PN). Here, we have characterized the association between SYP and c-src tyrosine kinase demonstrating that phosphorylation of Tyr(273) in the C-terminal domain of SYP is crucial in mediating SYP binding to and activation of c-src. SYP forms a complex with Dynamin I (DynI), a GTPase required for SV endocytosis, which may be regulated by tyrosine phosphorylation of SYP. We here report that, in rat brain synaptosomes treated with PN, the formation of SYP/DynI complex was impaired. Noteworthy, we found that DynI was also modified by PN. DynI tyrosine phosphorylation was down-regulated in a dose-dependent manner, while DynI tyrosine nitration increased. Using mass spectrometry analysis, we identified Tyr(354) as one nitration site in DynI. In addition, we tested DynI self-assembly and GTPase activity, which are enhanced by c-src-dependent tyrosine phosphorylation of DynI, and found that both were inhibited by PN. Our results suggest that the site-specific tyrosine residue modifications may modulate the association properties of SV proteins and serve as a regulator of DynI function via control of self-assembly, thus influencing the physiology of the exo-endocytotic cycle.


Asunto(s)
Dinamina I/metabolismo , Dinamina I/fisiología , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Sinaptofisina/fisiología , Secuencia de Aminoácidos , Animales , Dinamina I/química , Dinamina I/genética , Endocitosis/genética , Endocitosis/fisiología , Exocitosis/genética , Exocitosis/fisiología , Técnicas In Vitro , Datos de Secuencia Molecular , Nitratos/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Ratas , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad , Vesículas Sinápticas/fisiología , Sinaptofisina/química , Sinaptofisina/genética , Tirosina/metabolismo , Tirosina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...