Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Phys ; 152(21): 214117, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505150

RESUMEN

MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.

2.
J Chem Phys ; 152(7): 074302, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087651

RESUMEN

In this paper, we examine decay and fragmentation of core-excited and core-ionized water molecules combining quantum chemical calculations and electron-energy-resolved electron-ion coincidence spectroscopy. The experimental technique allows us to connect electronic decay from core-excited states, electronic transitions between ionic states, and dissociation of the molecular ion. To this end, we calculate the minimum energy dissociation path of the core-excited molecule and the potential energy surfaces of the molecular ion. Our measurements highlight the role of ultra-fast nuclear motion in the 1a1 -14a1 core-excited molecule in the production of fragment ions. OH+ fragments dominate for spectator Auger decay. Complete atomization after sequential fragmentation is also evident through detection of slow H+ fragments. Additional measurements of the non-resonant Auger decay of the core-ionized molecule (1a1 -1) to the lower-energy dication states show that the formation of the OH+ + H+ ion pair dominates, whereas sequential fragmentation OH+ + H+ → O + H+ + H+ is observed for transitions to higher dication states, supporting previous theoretical investigations.

3.
J Chem Theory Comput ; 15(11): 5925-5964, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509407

RESUMEN

In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

4.
J Chem Theory Comput ; 12(4): 1647-55, 2016 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-26930185

RESUMEN

The chromium dimer has long been a benchmark molecule to evaluate the performance of different computational methods ranging from density functional theory to wave function methods. Among the latter, multiconfigurational perturbation theory was shown to be able to reproduce the potential energy surface of the chromium dimer accurately. However, for modest active space sizes, it was later shown that different definitions of the zeroth-order Hamiltonian have a large impact on the results. In this work, we revisit the system for the third time with multiconfigurational perturbation theory, now in order to increase the active space of the reference wave function. This reduces the impact of the choice of zeroth-order Hamiltonian and improves the shape of the potential energy surface significantly. We conclude by comparing our results of the dissocation energy and vibrational spectrum to those obtained from several highly accurate multiconfigurational methods and experiment. For a meaningful comparison, we used the extrapolation to the complete basis set for all methods involved.

5.
J Comput Chem ; 37(5): 506-41, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26561362

RESUMEN

In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization.


Asunto(s)
Algoritmos , Electrones , Compuestos Macrocíclicos/química , Timidina/química , Simulación de Dinámica Molecular , Teoría Cuántica , Programas Informáticos , Termodinámica
6.
J Am Chem Soc ; 136(33): 11626-35, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25078723

RESUMEN

Human pigmentation is a complex phenomenon commonly believed to serve a photoprotective function through the generation and strategic localization of black insoluble eumelanin biopolymers in sun exposed areas of the body. Despite compelling biomedical relevance to skin cancer and melanoma, eumelanin photoprotection is still an enigma: What makes this pigment so efficient in dissipating the excess energy brought by harmful UV-light as heat? Why has Nature selected 5,6-dihydroxyindole-2-carboxylic acid (DHICA) as the major building block of the pigment instead of the decarboxylated derivative (DHI)? By using pico- and femtosecond fluorescence spectroscopy we demonstrate herein that the excited state deactivation in DHICA oligomers is 3 orders of magnitude faster compared to DHI oligomers. This drastic effect is attributed to their specific structural patterns enabling multiple pathways of intra- and interunit proton transfer. The discovery that DHICA-based scaffolds specifically confer uniquely robust photoprotective properties to natural eumelanins settles a fundamental gap in the biology of human pigmentation and opens the doorway to attractive advances and applications.


Asunto(s)
Indoles/química , Melaninas/química , Humanos , Estructura Molecular , Procesos Fotoquímicos , Espectrometría de Fluorescencia
7.
J Comput Chem ; 34(22): 1937-48, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23749386

RESUMEN

In this work, we present a parallel approach to complete and restricted active space second-order perturbation theory, (CASPT2/RASPT2). We also make an assessment of the performance characteristics of its particular implementation in the Molcas quantum chemistry programming package. Parallel scaling is limited by memory and I/O bandwidth instead of available cores. Significant time savings for calculations on large and complex systems can be achieved by increasing the number of processes on a single machine, as long as memory bandwidth allows, or by using multiple nodes with a fast, low-latency interconnect. We found that parallel efficiency drops below 50% when using 8-16 cores on the shared-memory architecture, or 16-32 nodes on the distributed-memory architecture, depending on the calculation. This limits the scalability of the implementation to a moderate amount of processes. Nonetheless, calculations that took more than 3 days on a serial machine could be performed in less than 5 h on an InfiniBand cluster, where the individual nodes were not even capable of running the calculation because of memory and I/O requirements. This ensures the continuing study of larger molecular systems by means of CASPT2/RASPT2 through the use of the aggregated computational resources offered by distributed computing systems.


Asunto(s)
Compuestos Organometálicos/química , Teoría Cuántica
8.
J Am Chem Soc ; 132(24): 8484-8, 2010 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-20504028

RESUMEN

Laser evaporation of carbon-rich uranium/carbon alloys followed by atom reactions in a solid argon matrix and trapping at 8 K gives weak infrared absorptions for CUO at 852 and 804 cm(-1). A new band at 827 cm(-1) becomes a doublet with mixed carbon 12 and 13 isotopes and exhibits the 1.0381 isotopic frequency ratio, which is appropriate for the UC diatomic molecule, and another new band at 891 cm(-1) gives a three-band mixed isotopic spectrum with the 1.0366 isotopic frequency ratio, which is characteristic of the linear CUC molecule. CASPT2 calculations with dynamical correlation find the C[triple bond]U[triple bond]C ground state as linear 3Sigma(u)+ with 1.840 A bond length and molecular orbital occupancies for an effective bond order of 2.83. Similar calculations with spin-orbit coupling show that the U[triple bond]C diatomic molecule has a quintet (Lambda = 5, Omega = 3) ground state, a similar 1.855 A bond length, and a fully developed triple bond of 2.82 effective bond order.

9.
J Comput Chem ; 31(1): 224-47, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19499541

RESUMEN

Some of the new unique features of the MOLCAS quantum chemistry package version 7 are presented in this report. In particular, the Cholesky decomposition method applied to some quantum chemical methods is described. This approach is used both in the context of a straight forward approximation of the two-electron integrals and in the generation of so-called auxiliary basis sets. The article describes how the method is implemented for most known wave functions models: self-consistent field, density functional theory, 2nd order perturbation theory, complete-active space self-consistent field multiconfigurational reference 2nd order perturbation theory, and coupled-cluster methods. The report further elaborates on the implementation of a restricted-active space self-consistent field reference function in conjunction with 2nd order perturbation theory. The average atomic natural orbital basis for relativistic calculations, covering the whole periodic table, are described and associated unique properties are demonstrated. Furthermore, the use of the arbitrary order Douglas-Kroll-Hess transformation for one-component relativistic calculations and its implementation are discussed. This section especially focuses on the implementation of the so-called picture-change-free atomic orbital property integrals. Moreover, the ElectroStatic Potential Fitted scheme, a version of a quantum mechanics/molecular mechanics hybrid method implemented in MOLCAS, is described and discussed. Finally, the report discusses the use of the MOLCAS package for advanced studies of photo chemical phenomena and the usefulness of the algorithms for constrained geometry optimization in MOLCAS in association with such studies.


Asunto(s)
Algoritmos , Teoría Cuántica , Programas Informáticos , Fotoquímica/métodos
10.
J Phys Chem A ; 113(21): 6064-9, 2009 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-19413289

RESUMEN

Laser-ablated group 6 metal atoms react with NF3 and PF3 to form the simple lowest energy N[triple bond]MF3 and P[triple bond]MX3 products, and this investigation has been extended to AsF3. Mo and W atoms react with AsF3 upon excitation by laser ablation or UV irradiation to form stable trigonal As[triple bond]MF3 terminal arsenides. These molecules are identified by comparison of the closely related infrared spectra of the analogous phosphide species and with frequencies calculated by density functional theory and multiconfigurational second order perturbation theory (CASSCF/CASPT2). Computed CASSCF/CASPT2 triple bond lengths for the As[triple bond]MoF3 and As[triple bond]WF3 molecules are 2.240 A and 2.250 A, respectively. The natural bond orders calculated by CASSCF/CASPT2 decrease from 2.67 to 2.60 for P[triple bond]MoF3 to As[triple bond]MoF3 and from 2.74 to 2.70 for P[triple bond]WF3 to As[triple bond]WF3 as the arsenic valence orbitals are less effective than those of phosphorus in bonding to each metal atom and the larger metal orbital size becomes more compatible with the arsenic valence orbitals. The Cr atom reaction gives the arsinidene AsF=CrF2 product instead of the higher energy As[triple bond]CrF3 molecule as the Cr (VI) state is not supported by the softer pnictides.

11.
J Chem Phys ; 130(12): 124521, 2009 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-19334865

RESUMEN

A general expression for the distribution of the fluctuating 2(l)-pole moment M(l) of a spherical sample of dielectric material is derived on the basis of dielectric theory combined with statistical mechanics. The formulas are compared with results from computer simulations of a weakly coupled Stockmayer fluid and the agreement is shown to be excellent. Furthermore, we calculate the size of the coupling, quantified through the free energy of solvation A(solv), of the fluctuating electric moments to a surrounding dielectric medium. It turns out that the contribution to A(solv) from each fluctuating electric moment actually increases with increasing order l of the moment, resulting in a formally infinite free energy of solvation. We also present a correction to A(solv) for molecular media, which shows that the molecular nature of the surrounding medium effectively suppresses the divergence in the solvation free energy.

12.
J Phys Chem A ; 112(45): 11431-5, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18928264

RESUMEN

New basis sets of the atomic natural orbital (ANO) type have been developed for the lanthanide atoms La-Lu. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second-order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies and some excitation energies. Computed ionization energies have an accuracy better than 0.1 eV in most cases. Two molecular applications are included as illustration: the cerium diatom and the LuF3 molecule. In both cases it is shown that 4f orbitals are not involved in the chemical bond in contrast to an earlier claim for the latter molecule.


Asunto(s)
Cerio/química , Simulación por Computador , Flúor/química , Elementos de la Serie de los Lantanoides/química , Lutecio/química , Dimerización , Termodinámica
13.
J Chem Phys ; 128(20): 204109, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18513012

RESUMEN

A multireference second-order perturbation theory using a restricted active space self-consistent field wave function as reference (RASPT2/RASSCF) is described. This model is particularly effective for cases where a chemical system requires a balanced orbital active space that is too large to be addressed by the complete active space self-consistent field model with or without second-order perturbation theory (CASPT2 or CASSCF, respectively). Rather than permitting all possible electronic configurations of the electrons in the active space to appear in the reference wave function, certain orbitals are sequestered into two subspaces that permit a maximum number of occupations or holes, respectively, in any given configuration, thereby reducing the total number of possible configurations. Subsequent second-order perturbation theory captures additional dynamical correlation effects. Applications of the theory to the electronic structure of complexes involved in the activation of molecular oxygen by mono- and binuclear copper complexes are presented. In the mononuclear case, RASPT2 and CASPT2 provide very similar results. In the binuclear cases, however, only RASPT2 proves quantitatively useful, owing to the very large size of the necessary active space.

14.
J Chem Theory Comput ; 4(5): 694-702, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-26621084

RESUMEN

The electronic structure and low-lying electronic states of a Co(III)(diiminato)(NPh) complex have been studied using multiconfigurational wave function theory (CASSCF/CASPT2). The results have been compared to those obtained with density functional theory. The best agreement with ab initio results is obtained with a modified B3LYP functional containing a reduced amount (15%) of Hartree-Fock exchange. A relativistic basis set with 869 functions has been employed in the most extensive ab initio calculations, where a Cholesky decomposition technique was used to overcome problems arising from the large size of the two-electron integral matrix. It is shown that this approximation reproduces results obtained with the full integral set to a high accuracy, thus opening the possibility to use this approach to perform multiconfigurational wave-function-based quantum chemistry on much larger systems relative to what has been possible until now.

15.
Chemphyschem ; 8(12): 1803-15, 2007 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-17647251

RESUMEN

The computation of the electronic g tensor by two multireference methods is presented and applied to a selection of molecules including CN, BO, AlO, GaO, InO, ZnH, ZnF, O(2), H(2)O(+), O(3) (-), and H(2)CO(+) (group A) as well as TiF(3), CuCl(4) (2-), Cu(NH(3))(4) (2+), and a series of d(1)-MOX(4) (n-) compounds, with M=V, Cr, Mo, Tc, W, Re and X=F, Cl, Br (group B). Two approaches are considered, namely, one in which spin-orbit coupling and the Zeeman effect are included using second-order perturbation theory and another one in which the Zeeman effect is added through first-order degenerate perturbation theory within the ground-state Kramers doublet. The two methods have been implemented into the MOLCAS quantum chemistry software package. The results obtained for the molecules in group A are in good agreement with experiment and with previously reported calculated g values. The results for the molecules in group B vary. While the g values for the d(1) systems are superior to previous theoretical results, those obtained for the d(9) systems are too large compared to the experimental values.

16.
Inorg Chem ; 46(12): 4917-25, 2007 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-17487964

RESUMEN

Uranium atoms activate methane upon ultraviolet excitation to form the methyl uranium hydride CH3-UH, which undergoes alpha-H transfer to produce uranium methylidene dihydride, CH2=UH2. This rearrangement most likely occurs on an excited-quintet potential-energy surface and is followed by relaxation in the argon matrix. These simple U+CH4 reaction products are identified through isotopic substitution (13CH4, CD4, CH2D2) and density functional theory frequency and structure calculations for the strong U-H stretching modes. Relativistic multiconfiguration (CASSCF/CASPT2) calculations substantiate the agostic distorted C1 ground-state structure for the triplet CH2=UH2 molecule. We find that uranium atoms are less reactive in methane activation than thorium atoms. Our calculations show that the CH2=UH2 complex is distorted more than CH2=ThH2. A favorable interaction between the low energy open-shell U(5f) sigma orbital and the agostic hydrogen contributes to the distortion in the uranium methylidene complexes.

17.
J Am Chem Soc ; 128(51): 17000-6, 2006 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-17177451

RESUMEN

Multiconfigurational quantum chemical methods (CASSCF/CASPT2) have been used to study the chemical bond in the actinide diatoms Ac2, Th2, Pa2, and U2. Scalar relativistic effects and spin-orbit coupling have been included in the calculations. In the Ac2 and Th2 diatoms the atomic 6d, 7s, and 7p orbitals are the significant contributors to the bond, while for the two heavier diatoms, the 5f orbitals become increasingly important. Ac2 is characterized by a double bond with a 3Sigmag-(0g+) ground state, a bond distance of 3.64. A, and a bond energy of 1.19 eV. Th2 has quadruple bond character with a 3Dg(1g) ground state. The bond distance is 2.76 A and the bond energy (D0) 3.28 eV. Pa2 is characterized by a quintuple bond with a 3Sigmag-(0g+) ground state. The bond distance is 2.37 A and the bond energy 4.00 eV. The uranium diatom has also a quintuple bond with a 7Og (8g) ground state, a bond distance of 2.43 A, and a bond energy of 1.15 eV. It is concluded that the strongest bound actinide diatom is Pa2, characterized by a well-developed quintuple bond.

18.
J Phys Chem A ; 109(29): 6575-9, 2005 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16834004

RESUMEN

New basis sets of the atomic natural orbital (ANO) type have been developed for the first, second, and third row transition metal atoms. The ANOs have been obtained from the average density matrix of the ground and lowest excited states of the atom, the positive and negative ions, and the atom in an electric field. Scalar relativistic effects are included through the use of a Douglas-Kroll-Hess Hamiltonian. Multiconfigurational wave functions have been used with dynamic correlation included using second order perturbation theory (CASSCF/CASPT2). The basis sets are applied in calculations of ionization energies, electron affinities, and excitation energies for all atoms and polarizabilities for spherically symmetric atoms. These calculations include spin-orbit coupling using a variation-perturbation approach. Computed ionization energies have an accuracy better than 0.2 eV in most cases. The accuracy of computed electron affinities is the same except in cases where the experimental values are smaller than 0.5 eV. Accurate results are obtained for the polarizabilities of atoms with spherical symmetry. Multiplet levels are presented for some of the third row transition metals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...